Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2005, Volume 5, Number 3, Pages 577–612
DOI: https://doi.org/10.17323/1609-4514-2005-5-3-577-612
(Mi mmj211)
 

This article is cited in 6 scientific papers (total in 6 papers)

On Schrödinger operators with dynamically defined potentials

M. Sh. Goldsteina, W. Schlagb

a Department of Mathematics, University of Toronto
b University of Chicago
Full-text PDF Citations (6)
References:
Abstract: The purpose of this article is to review some of the recent work on the operator
$$ (H_\psi)_n=-\psi_{n-1}-\psi_{n+1}+\lambda V(T^n x)\psi_n $$
on $\ell^2(\mathbb Z)$, where $T\colon X\to X$ is an ergodic transformation on $(X,\nu)$ and $V$ is a real-valued function. $\lambda$ is a real parameter called coupling constant. Typically, $X=\mathbb T^d=(\mathbb R/\mathbb Z)^d$ with Lebesgue measure, and $V$ will be a trigonometric polynomial or analytic. We shall focus on our earlier papers, as well as other work which was obtained jointly with Jean Bourgain. Our goal is to explain some of the methods and results from these references. Some of the material in this paper has not appeared elsewhere in print.
Key words and phrases: Eigenfunction, localization, Lyapunov exponent.
Received: July 4, 2005
Bibliographic databases:
MSC: 47B80
Language: English
Citation: M. Sh. Goldstein, W. Schlag, “On Schrödinger operators with dynamically defined potentials”, Mosc. Math. J., 5:3 (2005), 577–612
Citation in format AMSBIB
\Bibitem{GolSch05}
\by M.~Sh.~Goldstein, W.~Schlag
\paper On Schr\"odinger operators with dynamically defined potentials
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 3
\pages 577--612
\mathnet{http://mi.mathnet.ru/mmj211}
\crossref{https://doi.org/10.17323/1609-4514-2005-5-3-577-612}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2241813}
\zmath{https://zbmath.org/?q=an:1143.47301}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595500007}
Linking options:
  • https://www.mathnet.ru/eng/mmj211
  • https://www.mathnet.ru/eng/mmj/v5/i3/p577
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:305
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024