Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2005, Volume 5, Number 2, Pages 463–476
DOI: https://doi.org/10.17323/1609-4514-2005-5-2-463-476
(Mi mmj204)
 

This article is cited in 14 scientific papers (total in 14 papers)

Failure of the Hasse principle for Atkin–Lehner quotients of Shimura curves over $\mathbb Q$

V. Rotgera, A. D. Skorobogatovb, A. Yafaevc

a Escola Politècnica Superior d'Enginyeria de Vilanova i la Geltrú
b Imperial College, Department of Mathematics
c Department of Mathematics, University College London
Full-text PDF Citations (14)
References:
Abstract: We show how to construct counter-examples to the Hasse principle over the field of rational numbers on Atkin–Lehner quotients of Shimura curves and on twisted forms of Shimura curves by Atkin–Lehner involutions. A particular example is the quotient of the Shimura curve $X_{23\cdot 107}$ attached to the indefinite rational quaternion algebra of discriminant $23\cdot 107$ by the Atkin–Lehner involution $\omega_{107}$. The quadratic twist of $X_{23\cdot 107}$ by $\mathbb Q(\sqrt{-23})$ with respect to this involution is also a counter-example to the Hasse principle over $\mathbb Q$.
Key words and phrases: Shimura curves, rational points, Hasse principle, descent.
Received: July 9, 2004
Bibliographic databases:
MSC: 11G18, 14G35
Language: English
Citation: V. Rotger, A. D. Skorobogatov, A. Yafaev, “Failure of the Hasse principle for Atkin–Lehner quotients of Shimura curves over $\mathbb Q$”, Mosc. Math. J., 5:2 (2005), 463–476
Citation in format AMSBIB
\Bibitem{RotSkoYaf05}
\by V.~Rotger, A.~D.~Skorobogatov, A.~Yafaev
\paper Failure of the Hasse principle for Atkin--Lehner quotients of Shimura curves over~$\mathbb Q$
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 2
\pages 463--476
\mathnet{http://mi.mathnet.ru/mmj204}
\crossref{https://doi.org/10.17323/1609-4514-2005-5-2-463-476}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2200761}
\zmath{https://zbmath.org/?q=an:1087.11042}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595300009}
Linking options:
  • https://www.mathnet.ru/eng/mmj204
  • https://www.mathnet.ru/eng/mmj/v5/i2/p463
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:263
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024