Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2005, Volume 5, Number 2, Pages 329–370
DOI: https://doi.org/10.17323/1609-4514-2005-5-2-329-370
(Mi mmj198)
 

This article is cited in 3 scientific papers (total in 3 papers)

Quantizations of the Hitchin and Beauville–Mukai integrable systems

B. Enriqueza, V. N. Rubtsovbc

a University Louis Pasteur
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
c Université d'Angers
Full-text PDF Citations (3)
References:
Abstract: Spectral transformation is known to set up a birational morphism between the Hitchin and Beauville–Mukai integrable systems. The corresponding phase spaces are: (a) the cotangent bundle of the moduli space of bundles over a curve $C$, and (b) a symmetric power of the cotangent surface $T^*(C)$. We conjecture that this morphism can be quantized, and we check this conjecture in the case where $C$ is a rational curve with marked points and rank 2 bundles. We discuss the relation of the resulting isomorphism of quantized algebras with Sklyanin's separation of variables.
Key words and phrases: Hilbert scheme, quantization, lagrangian fibration, Lie–Reinhart algebra, Gaudin model.
Received: January 24, 2004
Bibliographic databases:
MSC: Primary 14H70, 17B80, 17B63, 81R12; Secondary 81R12
Language: English
Citation: B. Enriquez, V. N. Rubtsov, “Quantizations of the Hitchin and Beauville–Mukai integrable systems”, Mosc. Math. J., 5:2 (2005), 329–370
Citation in format AMSBIB
\Bibitem{EnrRub05}
\by B.~Enriquez, V.~N.~Rubtsov
\paper Quantizations of the Hitchin and Beauville--Mukai integrable systems
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 2
\pages 329--370
\mathnet{http://mi.mathnet.ru/mmj198}
\crossref{https://doi.org/10.17323/1609-4514-2005-5-2-329-370}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2200755}
\zmath{https://zbmath.org/?q=an:1105.14049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595300003}
Linking options:
  • https://www.mathnet.ru/eng/mmj198
  • https://www.mathnet.ru/eng/mmj/v5/i2/p329
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:302
    Full-text PDF :2
    References:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024