Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2005, Volume 5, Number 2, Pages 311–327
DOI: https://doi.org/10.17323/1609-4514-2005-5-2-311-327
(Mi mmj197)
 

This article is cited in 3 scientific papers (total in 3 papers)

The Gelfand transform in commutative algebra

V. M. Buchstabera, A. Yu. Lazarevb

a Steklov Mathematical Institute, Russian Academy of Sciences
b University of Bristol, Department of Mathematics
Full-text PDF Citations (3)
References:
Abstract: We consider the transformation ev which associates to any element in a $K$-algebra $A$ a function on the the set of its $K$-points. This is the analogue of the fundamental Gelfand transform. Both ev and its dual $\mathrm{ev}^*$ are the maps from a discrete $K$-module to a topological $K$-module and we investigate in which case the image of each map is dense. This question arises in the classical problem of the reconstruction of a function by its values at a given set of points. The answer is nontrivial for various choices of $K$ and $A$ already for $A=K[x]$, the polynomial ring in one variable. Applications to the structure of algebras of cohomology operations are given.
Key words and phrases: Linear topology, rings of divided powers, numerical polynomials, Landweber–Novikov algebra, Steenrod algebra.
Received: October 21, 2004
Bibliographic databases:
Document Type: Article
MSC: Primary 13B25, 13A05; Secondary 55N20
Language: English
Citation: V. M. Buchstaber, A. Yu. Lazarev, “The Gelfand transform in commutative algebra”, Mosc. Math. J., 5:2 (2005), 311–327
Citation in format AMSBIB
\Bibitem{BucLaz05}
\by V.~M.~Buchstaber, A.~Yu.~Lazarev
\paper The Gelfand transform in commutative algebra
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 2
\pages 311--327
\mathnet{http://mi.mathnet.ru/mmj197}
\crossref{https://doi.org/10.17323/1609-4514-2005-5-2-311-327}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2200754}
\zmath{https://zbmath.org/?q=an:1106.13006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595300002}
Linking options:
  • https://www.mathnet.ru/eng/mmj197
  • https://www.mathnet.ru/eng/mmj/v5/i2/p311
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024