Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2005, Volume 5, Number 1, Pages 171–206
DOI: https://doi.org/10.17323/1609-4514-2005-5-1-171-206
(Mi mmj190)
 

This article is cited in 18 scientific papers (total in 18 papers)

Rigidity theorems for generic holomorphic germs of dicritic foliations and vector fields in $(\mathbb C^2,0)$

L. Ortiz-Bobadil'yaa, È. Rosales-Gonzáleza, S. M. Voroninb

a National Autonomous University of Mexico
b Chelyabinsk State University
Full-text PDF Citations (18)
References:
Abstract: We consider the class $\mathcal V_{n+1}^d$ of dicritical germs of holomorphic vector fields in $(\mathbb C^2,0)$ with vanishing $n$-jet at the origin for $n\ge 1$. We prove, under some genericity assumptions, that the formal equivalence of two generic germs implies their analytic equivalence. A similar result is also established for orbital equivalence. Moreover, we give formal, orbitally formal, and orbitally analytic classifications of generic germs in $\mathcal V_{n+1}^d$ up to a change of coordinates with identity linear part.
Key words and phrases: Dicritic foliations, dicritic vector fields, rigidity, formal equivalence, analytic equivalence.
Received: March 6, 2003
Bibliographic databases:
Language: English
Citation: L. Ortiz-Bobadil'ya, È. Rosales-González, S. M. Voronin, “Rigidity theorems for generic holomorphic germs of dicritic foliations and vector fields in $(\mathbb C^2,0)$”, Mosc. Math. J., 5:1 (2005), 171–206
Citation in format AMSBIB
\Bibitem{OrtRosVor05}
\by L.~Ortiz-Bobadil'ya, \`E.~Rosales-Gonz\'alez, S.~M.~Voronin
\paper Rigidity theorems for generic holomorphic germs of dicritic foliations and vector fields in $(\mathbb C^2,0)$
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 1
\pages 171--206
\mathnet{http://mi.mathnet.ru/mmj190}
\crossref{https://doi.org/10.17323/1609-4514-2005-5-1-171-206}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2153473}
\zmath{https://zbmath.org/?q=an:1091.32012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595200011}
Linking options:
  • https://www.mathnet.ru/eng/mmj190
  • https://www.mathnet.ru/eng/mmj/v5/i1/p171
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:435
    Full-text PDF :1
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024