|
This article is cited in 9 scientific papers (total in 9 papers)
Small elliptic quantum group $e_{\tau,\gamma}(\mathfrak{sl}_N)$
V. O. Tarasova, A. N. Varchenkob a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Department of Mathematics, University of North Carolina at Chapel Hill
Abstract:
The small elliptic quantum group $e_{\tau,\gamma}(\mathfrak{sl}_N)$, introduced in the paper, is an elliptic dynamical analogue of the universal enveloping algebra $U(\mathfrak{sl}_N)$. We define highest weight modules, Verma modules, and contragradient modules over $e_{\tau,\gamma}(\mathfrak{sl}_N)$, the dynamical Shapovalov form for $e_{\tau,\gamma}(\mathfrak{sl}_N)$, and the contravariant form for highest weight $e_{\tau,\gamma}(\mathfrak{sl}_N)$-modules. We show that any finite-dimensional $\mathfrak{sl}_N$-module and any Verma module over $\mathfrak{sl}_N$ can be lifted to the corresponding $e_{\tau,\gamma}(\mathfrak{sl}_N)$-module on the same vector space. For the elliptic quantum group $E_{\tau,\gamma}(\mathfrak{sl}_N)$ we construct the evaluation morphism $E_{\tau,\gamma}(\mathfrak{sl}_N)\to e_{\tau,\gamma}(\mathfrak{sl}_N)$, thus making any $e_{\tau,\gamma}(\mathfrak{sl}_N)$-module into an evaluation module $E_{\tau,\gamma}(\mathfrak{sl}_N)$-module.
Key words and phrases:
Dynamical Yang–Baxter equation, elliptic quantum group.
Received: November 22, 2000
Citation:
V. O. Tarasov, A. N. Varchenko, “Small elliptic quantum group $e_{\tau,\gamma}(\mathfrak{sl}_N)$”, Mosc. Math. J., 1:2 (2001), 243–286
Linking options:
https://www.mathnet.ru/eng/mmj19 https://www.mathnet.ru/eng/mmj/v1/i2/p243
|
Statistics & downloads: |
Abstract page: | 298 | References: | 79 |
|