Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2005, Volume 5, Number 1, Pages 157–169
DOI: https://doi.org/10.17323/1609-4514-2005-5-1-157-169
(Mi mmj189)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the velocities of Lagrangian minimizers

K. M. Khanina, D. V. Khmelevb, A. N. Sobolevskiic

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
b Isaac Newton Institute for Mathematical Sciences
c Observatoire de la Côte d'Azur
Full-text PDF Citations (1)
References:
Abstract: We consider minimizers for the natural time-dependent Lagrangian system in $\mathbb R^d$ with Lagrangian $L(x,v,t)=|v|^{\beta}/\beta-U(x,t)$, $\beta>1$, where $\beta>1$. For minimizers on a $T$ with one end-point fixed, we prove that the absolute values of velocities are bounded by $K\log^{2/\beta}T$, provided that the potential $U(x,t)$ and its gradient are uniformly bounded. We also show that the above estimate is asymptotically sharp.
Key words and phrases: Action-minimizing trajectories, time-dependent Lagrangian systems, variational problems in unbounded domains.
Received: June 30, 2003
Bibliographic databases:
MSC: 37J50
Language: English
Citation: K. M. Khanin, D. V. Khmelev, A. N. Sobolevskii, “On the velocities of Lagrangian minimizers”, Mosc. Math. J., 5:1 (2005), 157–169
Citation in format AMSBIB
\Bibitem{KhaKhmSob05}
\by K.~M.~Khanin, D.~V.~Khmelev, A.~N.~Sobolevskii
\paper On the velocities of Lagrangian minimizers
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 1
\pages 157--169
\mathnet{http://mi.mathnet.ru/mmj189}
\crossref{https://doi.org/10.17323/1609-4514-2005-5-1-157-169}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2153472}
\zmath{https://zbmath.org/?q=an:1092.37040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595200010}
Linking options:
  • https://www.mathnet.ru/eng/mmj189
  • https://www.mathnet.ru/eng/mmj/v5/i1/p157
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024