Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2005, Volume 5, Number 1, Pages 135–155
DOI: https://doi.org/10.17323/1609-4514-2005-5-1-135-155
(Mi mmj188)
 

This article is cited in 8 scientific papers (total in 8 papers)

Geometrically Markov geodesics on the modular surface

S. R. Katok, I. Ugarcovici

Department of Mathematics, Pennsylvania State University
Full-text PDF Citations (8)
References:
Abstract: The Morse method of coding geodesics on a surface of constant negative curvature consists of recording the sides of a given fundamental region cut by the geodesic. For the modular surface with the standard fundamental region each geodesic (which does not go to the cusp in either direction) is represented by a bi-infinite sequence of non-zero integers called its geometric code.
In this paper we show that the set of all geometric codes is not a finite-step Markov chain, and identify a maximal 1-step topological Markov chain of admissible geometric codes which we call, as well as the corresponding geodesics, geometrically Markov. We also show that the set of geometrically Markov codes is the maximal symmetric 1-step topological Markov chain of admissible geometric codes, and obtain an estimate from below for the topological entropy of the geodesic flow restricted to this set.
Key words and phrases: Modular surface, geodesic flow, topological entropy, topological Markov chain.
Received: May 28, 2003; in revised form February 11, 2005
Bibliographic databases:
MSC: Primary 37D40, 37B40; Secondary 11A55, 20H05
Language: English
Citation: S. R. Katok, I. Ugarcovici, “Geometrically Markov geodesics on the modular surface”, Mosc. Math. J., 5:1 (2005), 135–155
Citation in format AMSBIB
\Bibitem{KatUga05}
\by S.~R.~Katok, I.~Ugarcovici
\paper Geometrically Markov geodesics on the modular surface
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 1
\pages 135--155
\mathnet{http://mi.mathnet.ru/mmj188}
\crossref{https://doi.org/10.17323/1609-4514-2005-5-1-135-155}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2153471}
\zmath{https://zbmath.org/?q=an:1090.37020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595200009}
Linking options:
  • https://www.mathnet.ru/eng/mmj188
  • https://www.mathnet.ru/eng/mmj/v5/i1/p135
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:300
    Full-text PDF :1
    References:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024