Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2004, Volume 4, Number 4, Pages 787–846
DOI: https://doi.org/10.17323/1609-4514-2004-4-4-787-846
(Mi mmj172)
 

This article is cited in 5 scientific papers (total in 5 papers)

Counting minimal form factors of the restricted sine-Gordon model

M. Jimboa, T. Miwab, Y. Takeyamac

a University of Tokyo
b Kyoto University
c University of Tsukuba
Full-text PDF Citations (5)
References:
Abstract: We revisit the issue of counting all local fields of the restricted sine-Gordon model, in the case corresponding to a perturbation of minimal unitary conformal field theory. The problem amounts to the study of a quotient of certain space of polynomials which enter the integral representation for form factors. This space may be viewed as a $q$-analog of the space of conformal coinvariants associated with $U_q(\widehat{\mathfrak{sl}}_2)$ with $q=\sqrt{-1}$. We prove that its character is given by the restricted Kostka polynomial multiplied by a simple factor. As a result, we obtain a formula for the truncated character of the total space of local fields in terms of the Virasoro characters.
Key words and phrases: Form factor, restricted sine-Gordon model.
Received: April 11, 2003
Bibliographic databases:
MSC: 81T40, 81R50
Language: English
Citation: M. Jimbo, T. Miwa, Y. Takeyama, “Counting minimal form factors of the restricted sine-Gordon model”, Mosc. Math. J., 4:4 (2004), 787–846
Citation in format AMSBIB
\Bibitem{JimMiwTak04}
\by M.~Jimbo, T.~Miwa, Y.~Takeyama
\paper Counting minimal form factors of the restricted sine-Gordon model
\jour Mosc. Math.~J.
\yr 2004
\vol 4
\issue 4
\pages 787--846
\mathnet{http://mi.mathnet.ru/mmj172}
\crossref{https://doi.org/10.17323/1609-4514-2004-4-4-787-846}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2124168}
\zmath{https://zbmath.org/?q=an:1084.81066}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595000002}
Linking options:
  • https://www.mathnet.ru/eng/mmj172
  • https://www.mathnet.ru/eng/mmj/v4/i4/p787
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:248
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024