Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2004, Volume 4, Number 3, Pages 729–779
DOI: https://doi.org/10.17323/1609-4514-2004-4-3-729-779
(Mi mmj171)
 

This article is cited in 15 scientific papers (total in 15 papers)

Vertex algebras and the Landau–Ginzburg/Calabi–Yau correspondence

V. G. Gorbunova, F. G. Malikovb

a University of Kentucky
b University of Southern California
Full-text PDF Citations (15)
References:
Abstract: We construct a spectral sequence that converges to the cohomology of the chiral de Rham complex over a Calabi–Yau hypersurface and whose first term is a vertex algebra closely related to the Landau–Ginzburg orbifold. As an application, we prove an explicit orbifold formula for the elliptic genus of Calabi–Yau hypersurfaces.
Key words and phrases: Vertex algebra, chiral rings, polyvector fields, spectral sequence, orbifold.
Received: August 29, 2003
Bibliographic databases:
Language: English
Citation: V. G. Gorbunov, F. G. Malikov, “Vertex algebras and the Landau–Ginzburg/Calabi–Yau correspondence”, Mosc. Math. J., 4:3 (2004), 729–779
Citation in format AMSBIB
\Bibitem{GorMal04}
\by V.~G.~Gorbunov, F.~G.~Malikov
\paper Vertex algebras and the Landau--Ginzburg/Calabi--Yau correspondence
\jour Mosc. Math.~J.
\yr 2004
\vol 4
\issue 3
\pages 729--779
\mathnet{http://mi.mathnet.ru/mmj171}
\crossref{https://doi.org/10.17323/1609-4514-2004-4-3-729-779}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2119147}
\zmath{https://zbmath.org/?q=an:1079.14050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594800010}
Linking options:
  • https://www.mathnet.ru/eng/mmj171
  • https://www.mathnet.ru/eng/mmj/v4/i3/p729
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:291
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024