Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2004, Volume 4, Number 3, Pages 719–727
DOI: https://doi.org/10.17323/1609-4514-2004-4-3-719-727
(Mi mmj170)
 

This article is cited in 4 scientific papers (total in 4 papers)

Hamiltonian reduction and Maurer–Cartan equations

W. Gana, V. A. Ginzburgb

a Department of Mathematics, Massachusetts Institute of Technology
b University of Chicago
Full-text PDF Citations (4)
References:
Abstract: We show that solving the Maurer–Cartan equations is, essentially, the same thing as performing the Hamiltonian reduction construction. In particular, any differential graded Lie algebra equipped with an even nondegenerate invariant bilinear form gives rise to modular stacks with symplectic structures.
Key words and phrases: Maurer–Cartan equations, Hamiltonian reduction, $L_\infty$-algebras.
Received: May 7, 2003
Bibliographic databases:
MSC: 53D12, 14D20
Language: English
Citation: W. Gan, V. A. Ginzburg, “Hamiltonian reduction and Maurer–Cartan equations”, Mosc. Math. J., 4:3 (2004), 719–727
Citation in format AMSBIB
\Bibitem{GanGin04}
\by W.~Gan, V.~A.~Ginzburg
\paper Hamiltonian reduction and Maurer--Cartan equations
\jour Mosc. Math.~J.
\yr 2004
\vol 4
\issue 3
\pages 719--727
\mathnet{http://mi.mathnet.ru/mmj170}
\crossref{https://doi.org/10.17323/1609-4514-2004-4-3-719-727}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2119146}
\zmath{https://zbmath.org/?q=an:1080.53083}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594800009}
Linking options:
  • https://www.mathnet.ru/eng/mmj170
  • https://www.mathnet.ru/eng/mmj/v4/i3/p719
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:309
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024