Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2004, Volume 4, Number 3, Pages 619–626
DOI: https://doi.org/10.17323/1609-4514-2004-4-3-619-626
(Mi mmj166)
 

This article is cited in 21 scientific papers (total in 21 papers)

On the notion of geometric realization

V. G. Drinfeld

University of Chicago
Full-text PDF Citations (21)
References:
Abstract: We explain why geometric realization commutes with Cartesian products and why the geometric realization of a simplicial set (resp., cyclic set) is equipped with an action of the group of orientation preserving homeomorphisms of the segment $[0,1]$ (resp., the circle).
Key words and phrases: Simplicial set, cyclic set, geometric realization, cyclic homology, fiber functor.
Received: May 5, 2003
Bibliographic databases:
MSC: 18G30, 55U10, 19D55
Language: English
Citation: V. G. Drinfeld, “On the notion of geometric realization”, Mosc. Math. J., 4:3 (2004), 619–626
Citation in format AMSBIB
\Bibitem{Dri04}
\by V.~G.~Drinfeld
\paper On the notion of geometric realization
\jour Mosc. Math.~J.
\yr 2004
\vol 4
\issue 3
\pages 619--626
\mathnet{http://mi.mathnet.ru/mmj166}
\crossref{https://doi.org/10.17323/1609-4514-2004-4-3-619-626}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2119142}
\zmath{https://zbmath.org/?q=an:1073.55010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594800005}
Linking options:
  • https://www.mathnet.ru/eng/mmj166
  • https://www.mathnet.ru/eng/mmj/v4/i3/p619
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024