Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2004, Volume 4, Number 2, Pages 503–510
DOI: https://doi.org/10.17323/1609-4514-2004-4-2-503-510
(Mi mmj157)
 

This article is cited in 1 scientific paper (total in 1 paper)

Theta groups over extensions of abelian varieties by unipotent groups

F. Pablos Romo

University of Salamanca
Full-text PDF Citations (1)
References:
Abstract: Let $0\to K_U\overset i\to Y\overset\pi\to X\to 0$ be a sequence of morphisms of algebraic groups over an algebraically closed field $k$, where $X$ is an abelian variety, $K_U$ is a unipotent, connected and commutative group scheme, and $(X,\pi)$ is a geometric quotient of $Y$ by $K_U$.
If $\mathcal L$ is an invertible sheaf over $X$, in this paper we generalize to $\overline{\mathcal L}=\pi^*\mathcal L$ the notion of a theta group associated with an invertible sheaf given by $D$. Mumford for an abelian variety.
Key words and phrases: Theta group, invertible sheaf, unipotent group, abelian variety.
Received: May 6, 2002
Bibliographic databases:
MSC: 14K05, 14K30, 14L15
Language: English
Citation: F. Pablos Romo, “Theta groups over extensions of abelian varieties by unipotent groups”, Mosc. Math. J., 4:2 (2004), 503–510
Citation in format AMSBIB
\Bibitem{Pab04}
\by F.~Pablos Romo
\paper Theta groups over extensions of abelian varieties by unipotent groups
\jour Mosc. Math.~J.
\yr 2004
\vol 4
\issue 2
\pages 503--510
\mathnet{http://mi.mathnet.ru/mmj157}
\crossref{https://doi.org/10.17323/1609-4514-2004-4-2-503-510}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2108446}
\zmath{https://zbmath.org/?q=an:1065.14057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594700007}
Linking options:
  • https://www.mathnet.ru/eng/mmj157
  • https://www.mathnet.ru/eng/mmj/v4/i2/p503
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024