Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2004, Volume 4, Number 1, Pages 67–109
DOI: https://doi.org/10.17323/1609-4514-2004-4-1-67-109
(Mi mmj143)
 

This article is cited in 39 scientific papers (total in 39 papers)

Modular Hecke algebras and their Hopf symmetry

A. Connesa, H. Moscovicib

a Collège de France
b Ohio State University
Full-text PDF Citations (39)
References:
Abstract: We introduce and begin to analyse a class of algebras, associated to congruence subgroups, that extend both the algebra of modular forms of all levels and the ring of classical Hecke operators. At the intuitive level, these are algebras of “polynomial coordinates” for the “transverse space” of lattices modulo the action of the Hecke correspondences. Their underlying symmetry is shown to be encoded by the same Hopf algebra that controls the transverse geometry of codimension 1 foliations. Its action is shown to span the “holomorphic tangent space” of the noncommutative space, and each of its three basic Hopf cyclic cocycles acquires a specific meaning. The Schwarzian 1-cocycle gives an inner derivation implemented by the level 1 Eisenstein series of weight 4. The Hopf cyclic 2-cocycle representing the transverse fundamental class provides a natural extension of the first Rankin–Cohen bracket to the modular Hecke algebras. Lastly, the Hopf cyclic version of the Godbillon–Vey cocycle gives rise to a 1-cocycle on ${\rm PSL}(2,\mathbb Q)$ with values in Eisenstein series of weigh 2, which, when coupled with the “period” cocycle, yields a representative of the Euler class.
Key words and phrases: Modular forms, Hecke correspondences, transverse geometry, Hopf cyclic homology, Dedekind eta function, Schwarzian cocycle, Euler class of ${\rm PSL}(2,\mathbb Q)$, Dedekind sums.
Received: May 14, 2003
Bibliographic databases:
MSC: 11F32, 11F75, 58B34
Language: English
Citation: A. Connes, H. Moscovici, “Modular Hecke algebras and their Hopf symmetry”, Mosc. Math. J., 4:1 (2004), 67–109
Citation in format AMSBIB
\Bibitem{ConMos04}
\by A.~Connes, H.~Moscovici
\paper Modular Hecke algebras and their Hopf symmetry
\jour Mosc. Math.~J.
\yr 2004
\vol 4
\issue 1
\pages 67--109
\mathnet{http://mi.mathnet.ru/mmj143}
\crossref{https://doi.org/10.17323/1609-4514-2004-4-1-67-109}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2074984}
\zmath{https://zbmath.org/?q=an:1122.11023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594500004}
Linking options:
  • https://www.mathnet.ru/eng/mmj143
  • https://www.mathnet.ru/eng/mmj/v4/i1/p67
  • This publication is cited in the following 39 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:401
    References:103
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024