Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 4, Pages 1429–1440
DOI: https://doi.org/10.17323/1609-4514-2003-3-4-1429-1440
(Mi mmj137)
 

This article is cited in 2 scientific papers (total in 2 papers)

Uniform distribution in the $(3x+1)$-problem

Ya. G. Sinaiab

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
b Princeton University, Department of Mathematics
Full-text PDF Citations (2)
References:
Abstract: Structure theorem of the $(3x+1)$-problem claims that the images under $T^n$ of arithmetic progressions with step $2^k$ are arithmetic progressions with step $3^m$. Here $T$ is the basic underlying map and a given $3^m$ progression can be the image of many different $2^k$ progressions. This gives rise to a probability distribution on the space of $3^m$ progressions. In this paper it is shown that this distribution is in a sense close to the uniform law.
Key words and phrases: $(3x+1)$-problem, uniform distribution, characteristic function.
Received: February 21, 2003
Bibliographic databases:
MSC: 60c05
Language: English
Citation: Ya. G. Sinai, “Uniform distribution in the $(3x+1)$-problem”, Mosc. Math. J., 3:4 (2003), 1429–1440
Citation in format AMSBIB
\Bibitem{Sin03}
\by Ya.~G.~Sinai
\paper Uniform distribution in the $(3x+1)$-problem
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 4
\pages 1429--1440
\mathnet{http://mi.mathnet.ru/mmj137}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-4-1429-1440}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2058805}
\zmath{https://zbmath.org/?q=an:1050.60008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594400010}
Linking options:
  • https://www.mathnet.ru/eng/mmj137
  • https://www.mathnet.ru/eng/mmj/v3/i4/p1429
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:669
    References:127
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024