Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 4, Pages 1369–1393
DOI: https://doi.org/10.17323/1609-4514-2003-3-4-1369-1393
(Mi mmj135)
 

This article is cited in 58 scientific papers (total in 58 papers)

Integrable systems in $n$-dimensional Riemannian geometry

J. A. Sandersa, J. Wangb

a Vrije Universiteit
b Brock University
Full-text PDF Citations (58)
References:
Abstract: In this paper we show that if one writes down the structure equations for the evolution of a curve embedded in an $n$-dimensional Riemannian manifold with constant curvature this leads to a symplectic, a Hamiltonian and a hereditary operator. This gives us a natural connection between finite dimensional geometry, infinite dimensional geometry and integrable systems. Moreover one finds a Lax pair in $\mathfrak o_{n+1}$ with the vector modified Korteweg–De Vries equation (vmKDV)
$$ u_t=u_{xxx}+\frac{3}{2}\|u\|^2 u_x $$
as integrability condition. We indicate that other integrable vector evolution equations can be found by using a different Ansatz on the form of the Lax pair. We obtain these results by using the natural or parallel frame and we show how this can be gauged by a generalized Hasimoto transformation to the (usual) Frenêt frame. If one chooses the curvature to be zero, as is usual in the context of integrable systems, then one loses information unless one works in the natural frame.
Key words and phrases: Hamiltonian pair, Riemanian geometry, Cartan connection, moving frame, generalized Hasimoto transformation.
Received: March 5, 2003
Bibliographic databases:
MSC: Primary 37K; Secondary 53A55
Language: English
Citation: J. A. Sanders, J. Wang, “Integrable systems in $n$-dimensional Riemannian geometry”, Mosc. Math. J., 3:4 (2003), 1369–1393
Citation in format AMSBIB
\Bibitem{SanWan03}
\by J.~A.~Sanders, J.~Wang
\paper Integrable systems in $n$-dimensional Riemannian geometry
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 4
\pages 1369--1393
\mathnet{http://mi.mathnet.ru/mmj135}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-4-1369-1393}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2058803}
\zmath{https://zbmath.org/?q=an:1050.37035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594400008}
Linking options:
  • https://www.mathnet.ru/eng/mmj135
  • https://www.mathnet.ru/eng/mmj/v3/i4/p1369
  • This publication is cited in the following 58 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:351
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024