Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 4, Pages 1307–1331
DOI: https://doi.org/10.17323/1609-4514-2003-3-4-1307-1331
(Mi mmj133)
 

This article is cited in 3 scientific papers (total in 3 papers)

The large $N$ limits of integrable models

M. A. Olshanetsky

Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
Full-text PDF Citations (3)
References:
Abstract: We consider the large $N$ limits of Hitchin-type integrable systems. The first system is the elliptic rotator on ${\rm GL}_N$ that corresponds to the Higgs bundle of degree 1 over an elliptic curve with a marked point. This system is gauge equivalent to the $N$-body elliptic Calogero–Moser system, which is obtained from the Higgs bundle of degree zero over the same curve. The large $N$ limit of the former system is the integrable rotator on the group of the non-commutative torus. Its classical limit leads to an integrable modification of 2D hydrodynamics on the two-dimensional torus. We also consider the elliptic Calogero–Moser system on the group of the non-commutative torus and consider the systems that arise after the reduction to the loop group.
Key words and phrases: Blanchfield form, Seifert form, algebraic transversality.
Received: March 4, 2002
Bibliographic databases:
MSC: 19J25, 57C45
Language: English
Citation: M. A. Olshanetsky, “The large $N$ limits of integrable models”, Mosc. Math. J., 3:4 (2003), 1307–1331
Citation in format AMSBIB
\Bibitem{Ols03}
\by M.~A.~Olshanetsky
\paper The large~$N$ limits of integrable models
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 4
\pages 1307--1331
\mathnet{http://mi.mathnet.ru/mmj133}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-4-1307-1331}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2058801}
\zmath{https://zbmath.org/?q=an:1051.37508}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594400006}
Linking options:
  • https://www.mathnet.ru/eng/mmj133
  • https://www.mathnet.ru/eng/mmj/v3/i4/p1307
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:233
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024