Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 4, Pages 1223–1245
DOI: https://doi.org/10.17323/1609-4514-2003-3-4-1223-1245
(Mi mmj129)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the Wecken property for the root problem of mappings between surfaces

S. A. Bogatyia, D. L. Gonçalvesb, E. A. Kudryavtsevaa, H. Zieschangac

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Universidade de São Paulo, Instituto de Matemática e Estatística
c Ruhr-Universität Bochum
Full-text PDF Citations (1)
References:
Abstract: Let $M_1$ and $M_2$ be two closed (not necessarily orientable) surfaces, $f\colon M_1\to M_2$ be a continuous map, and $c$ be a point in $M_2$. By definition, the map $f$ has the Wecken property for the root problem if $f$ can be deformed into a map $\tilde f$ such that the number $|\tilde f{-1}(c)|$ of roots of $\tilde f$ coincides with the number ${\rm NR}[f]$ of the essential Nielsen root classes of $f$, that is, ${\rm MR}[f]={\rm NR}[f]$. We characterize the pairs of surfaces $M_1$, $M_2$ for which all continuous mappings $f\colon M_1\to M_2$ have the Wecken property for the root problem. The criterion is formulated in terms of the Euler characteristics of the surfaces and their orientability properties.
Key words and phrases: Coincidence points, roots of maps, Nielsen classes, branched covering.
Received: October 28, 2001
Bibliographic databases:
MSC: 54H25, 57M12, 55M20
Language: English
Citation: S. A. Bogatyi, D. L. Gonçalves, E. A. Kudryavtseva, H. Zieschang, “On the Wecken property for the root problem of mappings between surfaces”, Mosc. Math. J., 3:4 (2003), 1223–1245
Citation in format AMSBIB
\Bibitem{BogGonKud03}
\by S.~A.~Bogatyi, D.~L.~Gon{\c c}alves, E.~A.~Kudryavtseva, H.~Zieschang
\paper On the Wecken property for the root problem of mappings between surfaces
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 4
\pages 1223--1245
\mathnet{http://mi.mathnet.ru/mmj129}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-4-1223-1245}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2058797}
\zmath{https://zbmath.org/?q=an:1055.55003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594400002}
Linking options:
  • https://www.mathnet.ru/eng/mmj129
  • https://www.mathnet.ru/eng/mmj/v3/i4/p1223
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:249
    Full-text PDF :1
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024