Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 3, Pages 1013–1037
DOI: https://doi.org/10.17323/1609-4514-2003-3-3-1013-1037
(Mi mmj119)
 

This article is cited in 1 scientific paper (total in 1 paper)

$L$-convex-concave sets in real projective space and $L$-duality

A. G. Khovanskiia, D. Novikovb

a University of Toronto
b Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis
Full-text PDF Citations (1)
References:
Abstract: We define a class of $L$-convex-concave subsets of $\mathbb RP^n$, where $L$ is a projective subspace of dimension $l$ in $\mathbb RP^n$. These are sets whose sections by any $(l+1)$-dimensional space $L'$ containing $L$ are convex and concavely depend on $L'$. We introduce an $L$-duality for these sets and prove that the $L$-dual to an $L$-convex-concave set is an $L^*$-convex-concave subset of $(\mathbb RP^n)^*$. We discuss a version of Arnold's conjecture for these sets and prove that it is true (or false) for an $L$-convex-concave set and its $L$-dual simultaneously.
Key words and phrases: Separability, duality, convex-concave set, nondegenerate projective hypersurfaces.
Received: August 5, 2002
Bibliographic databases:
MSC: 52A30, 52A35
Language: English
Citation: A. G. Khovanskii, D. Novikov, “$L$-convex-concave sets in real projective space and $L$-duality”, Mosc. Math. J., 3:3 (2003), 1013–1037
Citation in format AMSBIB
\Bibitem{KhoNov03}
\by A.~G.~Khovanskii, D.~Novikov
\paper $L$-convex-concave sets in real projective space and $L$-duality
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 3
\pages 1013--1037
\mathnet{http://mi.mathnet.ru/mmj119}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-3-1013-1037}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2078571}
\zmath{https://zbmath.org/?q=an:1078.52503}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594300012}
Linking options:
  • https://www.mathnet.ru/eng/mmj119
  • https://www.mathnet.ru/eng/mmj/v3/i3/p1013
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:264
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024