Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 3, Pages 989–1011
DOI: https://doi.org/10.17323/1609-4514-2003-3-3-989-1011
(Mi mmj118)
 

This article is cited in 10 scientific papers (total in 10 papers)

Geometry of higher helicities

B. A. Khesin

Department of Mathematics, University of Toronto
Full-text PDF Citations (10)
References:
Abstract: We revisit an interpretation of higher-dimensional helicities and Hopf–Novikov invariants from the point of view of the Brownian ergodic theorem. We also survey various results related to Arnold's theorem on the asymptotic Hopf invariant on three-dimensional manifolds and recent work on linking of a vector field with a foliation, the asymptotic crossing number, short path systems, and relations with the Calabi invariant.
Key words and phrases: Asymptotic Hopf invariant, linking number, linking form, measured foliation, ergodic theorems.
Received: April 4, 2003
Bibliographic databases:
MSC: 37A15, 55Q25, 76W05
Language: English
Citation: B. A. Khesin, “Geometry of higher helicities”, Mosc. Math. J., 3:3 (2003), 989–1011
Citation in format AMSBIB
\Bibitem{Khe03}
\by B.~A.~Khesin
\paper Geometry of higher helicities
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 3
\pages 989--1011
\mathnet{http://mi.mathnet.ru/mmj118}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-3-989-1011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2078570}
\zmath{https://zbmath.org/?q=an:1156.55300}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594300011}
Linking options:
  • https://www.mathnet.ru/eng/mmj118
  • https://www.mathnet.ru/eng/mmj/v3/i3/p989
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024