Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 3, Pages 947–987
DOI: https://doi.org/10.17323/1609-4514-2003-3-3-947-987
(Mi mmj117)
 

This article is cited in 16 scientific papers (total in 16 papers)

Maximally inflected real rational curves

V. M. Kharlamova, F. Sottileb

a University Louis Pasteur
b Texas A&M University
Full-text PDF Citations (16)
References:
Abstract: We begin the topological study of real rational plane curves all of whose inflection points are real. The existence of such curves is implied by the results of real Schubert calculus, and their study has consequences for the important Shapiro and Shapiro conjecture in real Schubert calculus. We establish restrictions on the number of real nodes of such curves and construct curves realizing the extreme numbers of real nodes. These constructions imply the existence of real solutions to some problems in Schubert calculus. We conclude with a discussion of maximally inflected curves of low degree.
Key words and phrases: Real plane curves, Schubert calculus.
Received: June 2, 2002; in revised form July 3, 2003
Bibliographic databases:
MSC: 14P25, 14N10, 14M15
Language: English
Citation: V. M. Kharlamov, F. Sottile, “Maximally inflected real rational curves”, Mosc. Math. J., 3:3 (2003), 947–987
Citation in format AMSBIB
\Bibitem{KhaSot03}
\by V.~M.~Kharlamov, F.~Sottile
\paper Maximally inflected real rational curves
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 3
\pages 947--987
\mathnet{http://mi.mathnet.ru/mmj117}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-3-947-987}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2078569}
\zmath{https://zbmath.org/?q=an:1052.14070}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594300010}
Linking options:
  • https://www.mathnet.ru/eng/mmj117
  • https://www.mathnet.ru/eng/mmj/v3/i3/p947
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:297
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024