Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 3, Pages 935–946
DOI: https://doi.org/10.17323/1609-4514-2003-3-3-935-946
(Mi mmj116)
 

This article is cited in 1 scientific paper (total in 1 paper)

Defining equations for bifurcations and singularities

J. Guckenheimera, Y. Xiangb

a Cornell University
b Two Sigma Investments
Full-text PDF Citations (1)
References:
Abstract: Singularity theory and bifurcation theory lead us to consider varieties in jet spaces of mappings. Explicit defining equations for these varieties are complex and sometimes difficult to compute numerically. This paper considers two examples: saddle-node bifurcation of periodic orbits and the Thom–Boardman stratification of singularity theory. Saddle-node bifurcation of periodic orbits is determined by their monodromy matrices. The bifurcation occurs when the difference between the monodromy matrix and the identity has a two dimensional nilpotent subspace. We discuss numerical methods for computing this nilpotency. The usual definitions of the Thom–Boardman stratification of a map involve computing the rank of the map restricted to submanifolds. Without explicit formulas for these submanifolds, determination of the rank is a difficult numerical problem. We reformulate the defining equations for the submanifolds of the stratification here, producing a minimal set of regular defining equations for each stratum.
Key words and phrases: Singularity, bifurcation, periodic orbit, saddle-node, Thom–Boardman stratification.
Received: July 1, 2002
Bibliographic databases:
MSC: 32S60, 37G15, 58K05
Language: English
Citation: J. Guckenheimer, Y. Xiang, “Defining equations for bifurcations and singularities”, Mosc. Math. J., 3:3 (2003), 935–946
Citation in format AMSBIB
\Bibitem{GucXia03}
\by J.~Guckenheimer, Y.~Xiang
\paper Defining equations for bifurcations and singularities
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 3
\pages 935--946
\mathnet{http://mi.mathnet.ru/mmj116}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-3-935-946}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2078568}
\zmath{https://zbmath.org/?q=an:1050.37023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594300009}
Linking options:
  • https://www.mathnet.ru/eng/mmj116
  • https://www.mathnet.ru/eng/mmj/v3/i3/p935
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:258
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024