Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 3, Pages 889–898
DOI: https://doi.org/10.17323/1609-4514-2003-3-3-889-898
(Mi mmj114)
 

Apparent contours and their Legendrian deformations

E. Ferrand

Institut Fourier, UFR de Mathématiques
References:
Abstract: After reviewing the notion of apparent contours of a smooth map $\varphi$ from a compact manifold $N$ to another manifold $M$, we recall the construction of an associated Legendrian subvariety in the space of contact elements of the goal manifold $M$ and we study various examples. The main result is that, in some sense, non-trivial Legendrian deformations of apparent contours do not exist: In the space of contact elements of a real projective space, the set of the Legendrian submanifolds obtained in this way is closed under Legendrian isotopy.
Key words and phrases: Contact topology.
Received: July 14, 2002
Bibliographic databases:
MSC: 53C15
Language: English
Citation: E. Ferrand, “Apparent contours and their Legendrian deformations”, Mosc. Math. J., 3:3 (2003), 889–898
Citation in format AMSBIB
\Bibitem{Fer03}
\by E.~Ferrand
\paper Apparent contours and their Legendrian deformations
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 3
\pages 889--898
\mathnet{http://mi.mathnet.ru/mmj114}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-3-889-898}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2078566}
\zmath{https://zbmath.org/?q=an:1056.53056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594300007}
Linking options:
  • https://www.mathnet.ru/eng/mmj114
  • https://www.mathnet.ru/eng/mmj/v3/i3/p889
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:198
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024