Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 3, Pages 869–879
DOI: https://doi.org/10.17323/1609-4514-2003-3-3-869-879
(Mi mmj112)
 

An integral generalization of the Gusein-Zade–Natanzon theorem

S. V. Chmutov

Ohio State University
References:
Abstract: Several years ago N. A'Campo invented a construction of a link from a real curve immersed into the disk. In the case of the curve obtained by the real morsification method of singularity theory the link is isotopic to the link of the corresponding singularity. S. M. Gusein-Zade and S. M. Natanzon proved that the Arf invariant of the obtained knot equals $J^-/2$ (mod 2) of the corresponding curve. Here we describe the Casson invariant of A'Campo knots as a $J^\pm$-type invariant of the immersed curve. Thus we get an integral generalization of the Gusein-Zade–Natanzon theorem. It turns out that this $J_2^\pm$-invariant is a second order invariant of the mixed $J^+$- and $J^-$-types. To the best of my knowledge, nobody has yet tried to study the mixed $J^\pm$-type invariants. It seems that our invariant is one of the simplest such invariants.
Key words and phrases: Knots, A'Campo's divides, immersed curves, Casson invariant, $J^\pm$-type invariants.
Received: June 29, 2002; in revised form July 30, 2002
Bibliographic databases:
MSC: 57M25
Language: English
Citation: S. V. Chmutov, “An integral generalization of the Gusein-Zade–Natanzon theorem”, Mosc. Math. J., 3:3 (2003), 869–879
Citation in format AMSBIB
\Bibitem{Chm03}
\by S.~V.~Chmutov
\paper An integral generalization of the Gusein-Zade--Natanzon theorem
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 3
\pages 869--879
\mathnet{http://mi.mathnet.ru/mmj112}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-3-869-879}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2078564}
\zmath{https://zbmath.org/?q=an:1063.57003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594300005}
Linking options:
  • https://www.mathnet.ru/eng/mmj112
  • https://www.mathnet.ru/eng/mmj/v3/i3/p869
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:180
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024