Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 3, Pages 807–821
DOI: https://doi.org/10.17323/1609-4514-2003-3-3-807-821
(Mi mmj109)
 

This article is cited in 4 scientific papers (total in 4 papers)

New singularities and perestroikas of fronts of linear waves

I. A. Bogaevsky

Independent University of Moscow
Full-text PDF Citations (4)
References:
Abstract: The subject of the paper is the propagation of linear waves in plane and three-dimensional space. We describe some new (as compared with the $ADE$-classification) typical singularities and perestroikas of their fronts when the light hypersurface has conical singularities. Such singularities appear if the waves propagate in a non-homogeneous anisotropic medium and are controlled by a variational principle.
Key words and phrases: Singularity, perestroika, front, contact structure, Legendre submanifold, Legendre fibration.
Received: June 26, 2002
Bibliographic databases:
MSC: 58K40, 74J05, 58J47
Language: English
Citation: I. A. Bogaevsky, “New singularities and perestroikas of fronts of linear waves”, Mosc. Math. J., 3:3 (2003), 807–821
Citation in format AMSBIB
\Bibitem{Bog03}
\by I.~A.~Bogaevsky
\paper New singularities and perestroikas of fronts of linear waves
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 3
\pages 807--821
\mathnet{http://mi.mathnet.ru/mmj109}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-3-807-821}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2078561}
\zmath{https://zbmath.org/?q=an:1063.58028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594300002}
Linking options:
  • https://www.mathnet.ru/eng/mmj109
  • https://www.mathnet.ru/eng/mmj/v3/i3/p807
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:297
    References:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024