Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 2, Pages 691–709
DOI: https://doi.org/10.17323/1609-4514-2003-3-2-691-709
(Mi mmj106)
 

This article is cited in 2 scientific papers (total in 2 papers)

Virial functionals in fluid dynamics

V. A. Vladimirov, K. I. Ilin

University of Hull
Full-text PDF Citations (2)
References:
Abstract: The aim of this paper is to show that functionals similar to the “virial” function of classical mechanics can be introduced for several dynamical systems of fluid mechanics provided that those dynamical systems can be described by Hamilton's principle of least action. The main requirement to “virials” is their increasing by virtue of equations of motion. Applications of those functionals to hydrodynamic stability theory are reviewed and further perspectives are discussed.
Key words and phrases: Inviscid fluid, instability, virial.
Received: August 14, 2002
Bibliographic databases:
MSC: Primary 76B99, 76E99; Secondary 76M99
Language: English
Citation: V. A. Vladimirov, K. I. Ilin, “Virial functionals in fluid dynamics”, Mosc. Math. J., 3:2 (2003), 691–709
Citation in format AMSBIB
\Bibitem{VlaIli03}
\by V.~A.~Vladimirov, K.~I.~Ilin
\paper Virial functionals in fluid dynamics
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 2
\pages 691--709
\mathnet{http://mi.mathnet.ru/mmj106}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-2-691-709}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025280}
\zmath{https://zbmath.org/?q=an:1056.76019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594200019}
Linking options:
  • https://www.mathnet.ru/eng/mmj106
  • https://www.mathnet.ru/eng/mmj/v3/i2/p691
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024