Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 2, Pages 681–690
DOI: https://doi.org/10.17323/1609-4514-2003-3-2-681-690
(Mi mmj105)
 

This article is cited in 10 scientific papers (total in 10 papers)

On skew loops, skew branes and quadratic hypersurfaces

S. L. Tabachnikov

Department of Mathematics, Pennsylvania State University
Full-text PDF Citations (10)
References:
Abstract: A skew brane is an immersed codimension 2 submanifold in affine space, free from pairs of parallel tangent spaces. Using Morse theory, we prove that a skew brane cannot lie on a quadratic hypersurface. We also prove that there are no skew loops on embedded ruled developable discs in 3-space.
Key words and phrases: Skew loops and skew branes, quadratic hypersurfaces, double normals, Morse theory, developable surfaces.
Bibliographic databases:
MSC: 53A05, 53C50, 58E05
Language: English
Citation: S. L. Tabachnikov, “On skew loops, skew branes and quadratic hypersurfaces”, Mosc. Math. J., 3:2 (2003), 681–690
Citation in format AMSBIB
\Bibitem{Tab03}
\by S.~L.~Tabachnikov
\paper On skew loops, skew branes and quadratic hypersurfaces
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 2
\pages 681--690
\mathnet{http://mi.mathnet.ru/mmj105}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-2-681-690}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025279}
\zmath{https://zbmath.org/?q=an:1050.53010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594200018}
Linking options:
  • https://www.mathnet.ru/eng/mmj105
  • https://www.mathnet.ru/eng/mmj/v3/i2/p681
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024