Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 2, Pages 621–645
DOI: https://doi.org/10.17323/1609-4514-2003-3-2-621-645
(Mi mmj102)
 

This article is cited in 37 scientific papers (total in 37 papers)

Critical points of functions, $\mathfrak{sl}_2$ representations, and Fuchsian differential equations with only univalued solutions

I. G. Scherbaka, A. N. Varchenkob

a Tel Aviv University
b Department of Mathematics, University of North Carolina at Chapel Hill
Full-text PDF Citations (37)
References:
Abstract: Let a second order Fuchsian differential equation with only univalued solutions have finite singular points at $z_1,\dots, z_n$ with exponents $(\rho_{1,1},\rho_{2,1}),\dots,(\rho_{1,n}\rho_{2,n})$. Let the exponents at infinity be $(\rho_{1,\infty},\rho_{2,\infty})$. Then for fixed generic $z_1,\dots, z_n$, the number of such Fuchsian equations is equal to the multiplicity of the irreducible $\mathfrak{sl}_2$ representation of dimension $|\rho_{2,\infty}-\rho_{1,\infty}|$ in the tensor product of irreducible $\mathfrak{sl}_2$ representations of dimensions $|\rho_{2,1}-\rho_{1,1}|,\dots,|\rho_{2,n}-\rho_{1,n}|$. To show this we count the number of critical points of a suitable function which plays the crucial role in constructions of the hypergeometric solutions of the $\mathfrak{sl}_2$ KZ equation and of the Bethe vectors in the $\mathfrak{sl}_2$ Gaudin model. As a byproduct of this study we conclude that the set of Bethe vectors is a basis in the space of states for the $\mathfrak{sl}_2$ inhomogeneous Gaudin model.
Key words and phrases: Critical points, Bethe ansatz, polynomial solutions of differential equations.
Received: April 16, 2002
Bibliographic databases:
MSC: Primary 14Qxx; Secondary 32Sxx, 33Cxx, 34Mxx
Language: English
Citation: I. G. Scherbak, A. N. Varchenko, “Critical points of functions, $\mathfrak{sl}_2$ representations, and Fuchsian differential equations with only univalued solutions”, Mosc. Math. J., 3:2 (2003), 621–645
Citation in format AMSBIB
\Bibitem{ShcVar03}
\by I.~G.~Scherbak, A.~N.~Varchenko
\paper Critical points of functions, $\mathfrak{sl}_2$ representations, and Fuchsian differential equations with only univalued solutions
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 2
\pages 621--645
\mathnet{http://mi.mathnet.ru/mmj102}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-2-621-645}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025276}
\zmath{https://zbmath.org/?q=an:1039.34077}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594200015}
Linking options:
  • https://www.mathnet.ru/eng/mmj102
  • https://www.mathnet.ru/eng/mmj/v3/i2/p621
  • This publication is cited in the following 37 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024