Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 2, Pages 593–619
DOI: https://doi.org/10.17323/1609-4514-2003-3-2-593-619
(Mi mmj101)
 

This article is cited in 40 scientific papers (total in 40 papers)

Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry–Mather theory

G. P. Paternaina, L. V. Polterovichb, K. Siburgc

a Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge
b Tel Aviv University, School of Mathematical Sciences
c Ruhr-Universität Bochum
Full-text PDF Citations (40)
References:
Abstract: The paper establishes a link between symplectic topology and Aubry–Mather theory. We show that certain Lagrangian submanifolds lying in an optical hypersurface cannot be deformed into the domain bounded by the hypersurface. Even when this rigidity fails, we find that the intersection between the deformed Lagrangian submanifold and the hypersurface always contains a dynamically significant set related to Aubry–Mather theory. This phenomenon, although in a weaker form, still persists in the non-optical case.
Key words and phrases: Lagrangian submanifold, optical hypersurface, characteristic foliation, Liouville class, symplectic shape, generating function, Aubry set.
Received: July 11, 2002
Bibliographic databases:
Language: English
Citation: G. P. Paternain, L. V. Polterovich, K. Siburg, “Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry–Mather theory”, Mosc. Math. J., 3:2 (2003), 593–619
Citation in format AMSBIB
\Bibitem{PatPolSib03}
\by G.~P.~Paternain, L.~V.~Polterovich, K.~Siburg
\paper Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry--Mather theory
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 2
\pages 593--619
\mathnet{http://mi.mathnet.ru/mmj101}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-2-593-619}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025275}
\zmath{https://zbmath.org/?q=an:1048.53058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594200014}
\elib{https://elibrary.ru/item.asp?id=8379116}
Linking options:
  • https://www.mathnet.ru/eng/mmj101
  • https://www.mathnet.ru/eng/mmj/v3/i2/p593
  • This publication is cited in the following 40 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:361
    References:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024