Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 2, Pages 551–591
DOI: https://doi.org/10.17323/1609-4514-2003-3-2-551-591
(Mi mmj100)
 

This article is cited in 3 scientific papers (total in 3 papers)

Quasialgebraicity of Picard–Vessiot fields

D. Novikova, S. Yu. Yakovenkob

a Department of Mathematics, University of Toronto
b Weizmann Institute of Science
Full-text PDF Citations (3)
References:
Abstract: We prove that under certain spectral assumptions on the monodromy group, solutions of Fuchsian systems of linear equations on the Riemann sphere admit explicit global uniform bounds on the number of their isolated zeros in a way remotely resembling algebraic functions of one variable.
Key words and phrases: Fuchsian systems, complex zeros, monodromy.
Received: July 3, 2002
Bibliographic databases:
MSC: Primary 34C08, 34M10; Secondary 34M15, 14Q20, 32S40, 32S65
Language: English
Citation: D. Novikov, S. Yu. Yakovenko, “Quasialgebraicity of Picard–Vessiot fields”, Mosc. Math. J., 3:2 (2003), 551–591
Citation in format AMSBIB
\Bibitem{NovYak03}
\by D.~Novikov, S.~Yu.~Yakovenko
\paper Quasialgebraicity of Picard--Vessiot fields
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 2
\pages 551--591
\mathnet{http://mi.mathnet.ru/mmj100}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-2-551-591}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025274}
\zmath{https://zbmath.org/?q=an:1058.34120}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594200013}
\elib{https://elibrary.ru/item.asp?id=8379115}
Linking options:
  • https://www.mathnet.ru/eng/mmj100
  • https://www.mathnet.ru/eng/mmj/v3/i2/p551
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024