Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2001, Volume 1, Number 1, Pages 27–47
DOI: https://doi.org/10.17323/1609-4514-2001-1-1-27-47
(Mi mmj10)
 

This article is cited in 30 scientific papers (total in 30 papers)

The duck and the devil: canards on the staircase

J. Guckenheimera, Yu. S. Ilyashenkobacd

a Cornell University
b Independent University of Moscow
c M. V. Lomonosov Moscow State University
d Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF Citations (30)
References:
Abstract: Slow-fast systems on the two-torus $T^2$ provide new effects not observed for systems on the plane. Namely, there exist families without auxiliary parameters that have attracting canard cycles for arbitrary small values of the time scaling parameter $\epsilon$. In order to demonstrate the new effect, we have chosen a particularly simple family, namely $\dot x=a-\cos x-\cos y$, $\dot y=\epsilon$, $a\in(1,2)$ being fixed. There is no doubt that a similar effect may be observed in generic slow-fast systems on $T^2$. The proposed paper is the first step in the proof of this conjecture.
Key words and phrases: Slow-fast systems on the torus, canard solution, devil's staircase, Poincaré map.
Received: September 27, 2000; in revised form February 2, 2001
Bibliographic databases:
Document Type: Article
MSC: 34A26, 34E15
Language: English
Citation: J. Guckenheimer, Yu. S. Ilyashenko, “The duck and the devil: canards on the staircase”, Mosc. Math. J., 1:1 (2001), 27–47
Citation in format AMSBIB
\Bibitem{GucIly01}
\by J.~Guckenheimer, Yu.~S.~Ilyashenko
\paper The duck and the devil: canards on the staircase
\jour Mosc. Math.~J.
\yr 2001
\vol 1
\issue 1
\pages 27--47
\mathnet{http://mi.mathnet.ru/mmj10}
\crossref{https://doi.org/10.17323/1609-4514-2001-1-1-27-47}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1852932}
\zmath{https://zbmath.org/?q=an:0985.34035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208587300002}
Linking options:
  • https://www.mathnet.ru/eng/mmj10
  • https://www.mathnet.ru/eng/mmj/v1/i1/p27
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:607
    References:104
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024