Matematicheskoe Modelirovanie i Chislennye Metody
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Mod. Chisl. Met.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe Modelirovanie i Chislennye Metody, 2014, Issue 4, Pages 53–73 (Mi mmcm29)  

This article is cited in 1 scientific paper (total in 1 paper)

Nonlinear delay reaction-diffusion equations of hyperbolic type: Exact solutions and global instability

A. D. Polyaninabc, V. G. Sorokinb, A. V. Vyazmind

a A. Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow
b Bauman Moscow State Technical University
c National Engineering Physics Institute "MEPhI", Moscow
d Moscow State Technical University "MAMI"
References:
Abstract: In the article we explored nonlinear hyperbolic delay reaction-diffusion equations with varying transfer coefficients. A number of generalized separable solutions were obtained. Most of the equations considered contain arbitrary functions. Global nonlinear instability conditions of solutions of hyperbolic delay reaction-diffusion systems were determined. The generalized Stokes problem for a linear delay diffusion equation with periodic boundary conditions was solved.
Keywords: Reaction-diffusion equations, nonlinear delay differential equations, exact solutions, generalized separation of variables, nonlinear instability, global instability.
Document Type: Article
UDC: 517.9+532+536
Language: Russian
Citation: A. D. Polyanin, V. G. Sorokin, A. V. Vyazmin, “Nonlinear delay reaction-diffusion equations of hyperbolic type: Exact solutions and global instability”, Mat. Mod. Chisl. Met., 2014, no. 4, 53–73
Citation in format AMSBIB
\Bibitem{PolSorVya14}
\by A.~D.~Polyanin, V.~G.~Sorokin, A.~V.~Vyazmin
\paper Nonlinear delay reaction-diffusion equations of hyperbolic type: Exact solutions and global instability
\jour Mat. Mod. Chisl. Met.
\yr 2014
\issue 4
\pages 53--73
\mathnet{http://mi.mathnet.ru/mmcm29}
Linking options:
  • https://www.mathnet.ru/eng/mmcm29
  • https://www.mathnet.ru/eng/mmcm/y2014/i4/p53
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование и численные методы
    Statistics & downloads:
    Abstract page:442
    Full-text PDF :214
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024