Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2007, Volume 19, Number 5, Pages 105–115 (Mi mm971)  

This article is cited in 4 scientific papers (total in 4 papers)

The support operator method for elliptical and parabolic boundary problems with discontinuous coefficients in anisotropic media

A. Kh. Pergament, V. A. Semiletov

M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
Full-text PDF (258 kB) Citations (4)
References:
Abstract: The work deals with elliptical and parabolic-type equations with discontinuous coefficients in anisotropic media. The support operator method is used to create a difference scheme. Approximation and convergence are investigated and mathematical modelling results are given.
Received: 30.06.2006
Bibliographic databases:
Language: Russian
Citation: A. Kh. Pergament, V. A. Semiletov, “The support operator method for elliptical and parabolic boundary problems with discontinuous coefficients in anisotropic media”, Mat. Model., 19:5 (2007), 105–115
Citation in format AMSBIB
\Bibitem{PerSem07}
\by A.~Kh.~Pergament, V.~A.~Semiletov
\paper The support operator method for elliptical and parabolic boundary problems with discontinuous coefficients in anisotropic media
\jour Mat. Model.
\yr 2007
\vol 19
\issue 5
\pages 105--115
\mathnet{http://mi.mathnet.ru/mm971}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2350956}
\zmath{https://zbmath.org/?q=an:1119.65413}
Linking options:
  • https://www.mathnet.ru/eng/mm971
  • https://www.mathnet.ru/eng/mm/v19/i5/p105
  • This publication is cited in the following 4 articles:
    1. R. V. Zhalnin, M. E. Ladonkina, V. F. Masyagin, V. F. Tishkin, “Solving the problem of non-stationary filtration of substance by the discontinuous Galerkin method on unstructured grids”, Comput. Math. Math. Phys., 56:6 (2016), 977–986  mathnet  crossref  crossref  isi  elib
    2. Tomin P.Yu., “Primenenie mnogomasshtabnykh algoritmov dlya resheniya zadach mnogofaznoi filtratsii v anizotropnykh sredakh”, Preprinty IPM im. M.V. Keldysha, 2011, no. 14, 1–21  elib
    3. P. Yu. Tomin, “Primenenie mnogomasshtabnykh algoritmov dlya resheniya zadach mnogofaznoi filtratsii v anizotropnykh sredakh”, Preprinty IPM im. M. V. Keldysha, 2011, 014, 21 pp.  mathnet
    4. A. Kh. Pergament, V. A. Semiletov, P. Yu. Tomin, “On some multiscale algorithms for sector modeling in multiphase flow problems”, Math. Models Comput. Simul., 3:3 (2011), 365–374  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:980
    Full-text PDF :317
    References:65
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025