Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2007, Volume 19, Number 1, Pages 14–28 (Mi mm914)  

This article is cited in 2 scientific papers (total in 2 papers)

Numerical simulation of thermal transpiration phenomenon by Monte-Carlo method with different scattering kernels on solid surface

O. V. Sazhin, A. N. Kulev

Ural State University
Full-text PDF (522 kB) Citations (2)
References:
Abstract: The results of numerical simulation of the thermal transpiration phenomenon at free molecular conditions of gas flow in channels with the Maxwell, the Cercignani–Lampis and the Epstein scattering kernel application are presented. The influence of the scattering kernel parameters and of the main physical characteristics of the simulated system on the thermal transpiration coefficient was studied. The comparison with the experimental data was also made. The principal outcome of the study is the statement that in contrast to the Maxwell kernel the application of the Cercignani–Lampis and the Epstein scattering kernels permits to describe more correctly the non-isothermal internal rarefied gas flow.
Received: 20.09.2005
Bibliographic databases:
Language: Russian
Citation: O. V. Sazhin, A. N. Kulev, “Numerical simulation of thermal transpiration phenomenon by Monte-Carlo method with different scattering kernels on solid surface”, Matem. Mod., 19:1 (2007), 14–28
Citation in format AMSBIB
\Bibitem{SazKul07}
\by O.~V.~Sazhin, A.~N.~Kulev
\paper Numerical simulation of thermal transpiration phenomenon by Monte-Carlo method with different scattering kernels on solid surface
\jour Matem. Mod.
\yr 2007
\vol 19
\issue 1
\pages 14--28
\mathnet{http://mi.mathnet.ru/mm914}
\zmath{https://zbmath.org/?q=an:1119.80349}
Linking options:
  • https://www.mathnet.ru/eng/mm914
  • https://www.mathnet.ru/eng/mm/v19/i1/p14
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:515
    Full-text PDF :192
    References:53
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024