Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2000, Volume 12, Number 3, Pages 97–109 (Mi mm852)  

This article is cited in 5 scientific papers (total in 5 papers)

Mathematical models and computer experiment

Adaptive grids from dirichlet cells for mathematical physics problems: a methodology for grid generation, examples

I. G. Pushkina, V. F. Tishkin

Institute for Mathematical Modelling, Russian Academy of Sciences
Abstract: In this paper overall methodology for generating unstructured adaptive grids fitted to solve 2D mathematical physics is described. Geometry adaptation approaches are proposed. A technique for adaptation to solution features is considered. The adaptive grids from Dirichlet cells and results of computing of supersonic inviscid flows around some contours are presented.
Received: 11.03.1999
Bibliographic databases:
Language: Russian
Citation: I. G. Pushkina, V. F. Tishkin, “Adaptive grids from dirichlet cells for mathematical physics problems: a methodology for grid generation, examples”, Mat. Model., 12:3 (2000), 97–109
Citation in format AMSBIB
\Bibitem{PusTis00}
\by I.~G.~Pushkina, V.~F.~Tishkin
\paper Adaptive grids from dirichlet cells for mathematical physics problems: a~methodology for grid generation, examples
\jour Mat. Model.
\yr 2000
\vol 12
\issue 3
\pages 97--109
\mathnet{http://mi.mathnet.ru/mm852}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1774841}
\zmath{https://zbmath.org/?q=an:1027.76621}
Linking options:
  • https://www.mathnet.ru/eng/mm852
  • https://www.mathnet.ru/eng/mm/v12/i3/p97
  • This publication is cited in the following 5 articles:
    1. V. A. Klyachin, A. A. Shirokii, “The Delaunay triangulation for multidimensional surfaces and its approximative properties”, Russian Math. (Iz. VUZ), 56:1 (2012), 27–34  mathnet  crossref  mathscinet
    2. V. A. Klyachin, “On a multidimensional analogue of the Schwarz example”, Izv. Math., 76:4 (2012), 681–687  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    3. Loubere R., Maire P.-H., Shashkov M., Breil J., Galera S., “ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method”, J Comput Phys, 229:12 (2010), 4724–4761  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    4. G. S. Bisnovatyi-Kogan, S. G. Moiseenko, B. P. Rybakin, G. V. Secrieru, “Modelling of explosive magnetorotational phenomena: from 2D to 3D”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2007, no. 3, 55–63  mathnet  mathscinet  zmath
    5. I. V. Popov, S. V. Polyakov, “Postroenie adaptivnykh neregulyarnykh treugolnykh setok dlya dvumernykh mnogosvyaznykh nevypuklykh oblastei”, Matem. modelirovanie, 14:6 (2002), 25–35  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:899
    Full-text PDF :442
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025