Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2000, Volume 12, Number 2, Pages 35–44 (Mi mm839)  

Subcritical systems with arbitrary released energy

A. A. Egorov, N. G. Zhadaeva

Belarusian State University
Abstract: The linear (one-dimensional) model of a multisection subcritical system with unidirectional neutron flows is considered. Within the frameworks of this model the analytical expressions for the stationary distribution of neutron density along system axis are found. The conditions which provide subcritical functioning of the total system and uniform distribution of neutron density along system axis are determined.
Bibliographic databases:
UDC: 519.63
Language: Russian
Citation: A. A. Egorov, N. G. Zhadaeva, “Subcritical systems with arbitrary released energy”, Matem. Mod., 12:2 (2000), 35–44
Citation in format AMSBIB
\Bibitem{EgoZha00}
\by A.~A.~Egorov, N.~G.~Zhadaeva
\paper Subcritical systems with arbitrary released energy
\jour Matem. Mod.
\yr 2000
\vol 12
\issue 2
\pages 35--44
\mathnet{http://mi.mathnet.ru/mm839}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1774016}
\zmath{https://zbmath.org/?q=an:1033.65084}
Linking options:
  • https://www.mathnet.ru/eng/mm839
  • https://www.mathnet.ru/eng/mm/v12/i2/p35
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:396
    Full-text PDF :157
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024