Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2001, Volume 13, Number 9, Pages 101–109 (Mi mm787)  

This article is cited in 6 scientific papers (total in 6 papers)

Stochastic Markov models for the process of binary complex formation and dissociation

A. Yu. Mitrofanov

Saratov State University named after N. G. Chernyshevsky
Full-text PDF (771 kB) Citations (6)
Abstract: We consider the chemical reaction $A+B\rightleftarrows AB$ taking place in a compartment of volume $V$, which contains $M$ and $N$, $M\geq N$, particles of species $A$ and $B$ free or bound. We investigate two stochastic models for the reaction, the quadratic model and the linear model. These models are homogeneous birth and death processes with a state space $\{0,1,\dots,N\}$. We derive inequalities which allow to estimate the accuracy of approximation of the state probability vectors, both transient and stationary, of the quadratic model by the state probability vectors of the linear model at $M$ $V\to\infty$, $V^{-1}M={\rm const}$. We show that if $N$ is small these inequalities can provide bounds which are of order of exact values of the difference norms of the corresponding state probability vectors.
Received: 10.09.2000
Bibliographic databases:
Language: Russian
Citation: A. Yu. Mitrofanov, “Stochastic Markov models for the process of binary complex formation and dissociation”, Matem. Mod., 13:9 (2001), 101–109
Citation in format AMSBIB
\Bibitem{Mit01}
\by A.~Yu.~Mitrofanov
\paper Stochastic Markov models for the process of binary complex formation and dissociation
\jour Matem. Mod.
\yr 2001
\vol 13
\issue 9
\pages 101--109
\mathnet{http://mi.mathnet.ru/mm787}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1901572}
\zmath{https://zbmath.org/?q=an:1014.92050}
Linking options:
  • https://www.mathnet.ru/eng/mm787
  • https://www.mathnet.ru/eng/mm/v13/i9/p101
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025