Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2001, Volume 13, Number 5, Pages 53–61 (Mi mm714)  

This article is cited in 4 scientific papers (total in 4 papers)

Kinetically consistent schemes of a higher accuracy order

I. V. Abalakina, A. V. Zhokhovab, B. N. Chetverushkina

a Institute for Mathematical Modelling, Russian Academy of Sciences
b M. V. Lomonosov Moscow State University
Full-text PDF (797 kB) Citations (4)
Abstract: The kinetically consistent finite difference schemes for unstructured triangular meshes have been constructed on the base of MUSCL-approximation of gasdynamic flows which provides a higher accuracy order on space.
Received: 21.04.2000
Bibliographic databases:
UDC: 519.63
Language: Russian
Citation: I. V. Abalakin, A. V. Zhokhova, B. N. Chetverushkin, “Kinetically consistent schemes of a higher accuracy order”, Mat. Model., 13:5 (2001), 53–61
Citation in format AMSBIB
\Bibitem{AbaZhoChe01}
\by I.~V.~Abalakin, A.~V.~Zhokhova, B.~N.~Chetverushkin
\paper Kinetically consistent schemes of a~higher accuracy order
\jour Mat. Model.
\yr 2001
\vol 13
\issue 5
\pages 53--61
\mathnet{http://mi.mathnet.ru/mm714}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1863076}
\zmath{https://zbmath.org/?q=an:1044.76045}
Linking options:
  • https://www.mathnet.ru/eng/mm714
  • https://www.mathnet.ru/eng/mm/v13/i5/p53
  • This publication is cited in the following 4 articles:
    1. E. N. Aristova, M. I. Stoynov, “Bicompact schemes of solving an stationary transport equation by quasi–diffusion method”, Math. Models Comput. Simul., 8:6 (2016), 615–624  mathnet  crossref  elib
    2. V. S. Mingalev, I. V. Mingalev, O. V. Mingalev, A. M. Oparin, K. G. Orlov, “Generalization of the hybrid monotone second-order finite difference scheme for gas dynamics equations to the case of unstructured 3D grid”, Comput. Math. Math. Phys., 50:5 (2010), 877–889  mathnet  crossref  adsnasa  isi
    3. A. V. Zhokhova, B. N. Chetverushkin, “Modelirovanie nestatsionarnykh gazodinamicheskikh techenii”, Matem. modelirovanie, 14:4 (2002), 35–44  mathnet  zmath
    4. I. A. Graur, “Algorithms for the numerical solution of quasi-gas-dynamic equations of second order accuracy”, Comput. Math. Math. Phys., 42:5 (2002), 668–678  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:490
    Full-text PDF :204
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025