Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2001, Volume 13, Number 4, Pages 117–126 (Mi mm709)  

Ñomputer experiments with elliptic billiard

A. A. Panov

Moscow State University of Geodesy and Cartography
Abstract: The main optical property of an ellipse implies that a point particle moving inside of an elliptic billiard, having left a focus of the ellipse will, after a collision, certainly pass through the other focus. The same will happen also in the subsequent collisions. It is geometrically obvious that the trajectory of the particle will get closer and closer to the main axis of the ellipse after each collision. However, computer experiments give in a sense the opposite indications.
Received: 07.02.2000
Bibliographic databases:
Language: Russian
Citation: A. A. Panov, “Ñomputer experiments with elliptic billiard”, Matem. Mod., 13:4 (2001), 117–126
Citation in format AMSBIB
\Bibitem{Pan01}
\by A.~A.~Panov
\paper Ñomputer experiments with elliptic billiard
\jour Matem. Mod.
\yr 2001
\vol 13
\issue 4
\pages 117--126
\mathnet{http://mi.mathnet.ru/mm709}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1861583}
\zmath{https://zbmath.org/?q=an:0981.37012}
Linking options:
  • https://www.mathnet.ru/eng/mm709
  • https://www.mathnet.ru/eng/mm/v13/i4/p117
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
    Statistics & downloads:
    Abstract page:621
    Full-text PDF :260
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024