Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2001, Volume 13, Number 4, Pages 71–83 (Mi mm705)  

On convergence of kinetically-consistent difference schemes of gas dynamics

T. D. Davitashvilia, T. G. Elizarovab, F. Criadoc, G. V. Meladzea, N. M. Skhirtladzea

a Tbilisi Ivane Javakhishvili State University
b Institute for Mathematical Modelling, Russian Academy of Sciences
c Department of Mathematics, University of Malaga
Abstract: In this paper the convergence of kinetically-consistent difference schemes of gas dynamics in Euler variables with sources (sinks) in the case of the ideal gas is investigated. The convergence of difference scheme is proved by means of energetical method. For the class of sufficiently smooth solutions of differential problem it is proved that the solution of the difference problem converges in the mesh norme $L_2$ and that the rate of convergence is $O(h^2)$.
Received: 07.10.1999
Bibliographic databases:
Language: Russian
Citation: T. D. Davitashvili, T. G. Elizarova, F. Criado, G. V. Meladze, N. M. Skhirtladze, “On convergence of kinetically-consistent difference schemes of gas dynamics”, Matem. Mod., 13:4 (2001), 71–83
Citation in format AMSBIB
\Bibitem{DavEliCri01}
\by T.~D.~Davitashvili, T.~G.~Elizarova, F.~Criado, G.~V.~Meladze, N.~M.~Skhirtladze
\paper On convergence of kinetically-consistent difference schemes of gas dynamics
\jour Matem. Mod.
\yr 2001
\vol 13
\issue 4
\pages 71--83
\mathnet{http://mi.mathnet.ru/mm705}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1861580}
\zmath{https://zbmath.org/?q=an:1049.76044}
Linking options:
  • https://www.mathnet.ru/eng/mm705
  • https://www.mathnet.ru/eng/mm/v13/i4/p71
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025