Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2001, Volume 13, Number 1, Pages 51–64 (Mi mm666)  

This article is cited in 3 scientific papers (total in 3 papers)

New methods in computer tomography

A. V. Khovanskii, A. M. Demkin

Troitsk Institute for Innovation and Fusion Research
Abstract: Two new methods of block-cycling inversion so as classical one (block-toeplitz inversion) for Radon problem in computer tomography with rotating invariant scheme of scanning are presented. Blockcycling form of the Radon operator allows to apply it's direct block-cycling inversion generalizing the implicit formula of an inverse circulant (in the I method) and block-Greville method (in the II one) instead of a classical block-Toeplitz inversion based on the notion of Toeplitz rang. The time complexity of the new algorithms 6N times better by perfomance at the stage of preliminary inversion, so as on the flow taking into account the parallel processing and 4 times better by memory volume required but their main advantage- the simplicity of implementation. The new algorithms were numerically simulated with the space resolution up to 101×101 with maximum – 15 min. for one variant of the model at the PC PENTIUM-166-32 (Fortran Powerstation). An important problem of Radon operator's almost singularity was discovered which is masked by compactness of the Radon operator so as averaging of cycling diagonal elements.
Received: 05.04.2000
Bibliographic databases:
Language: Russian
Citation: A. V. Khovanskii, A. M. Demkin, “New methods in computer tomography”, Mat. Model., 13:1 (2001), 51–64
Citation in format AMSBIB
\Bibitem{KhoDem01}
\by A.~V.~Khovanskii, A.~M.~Demkin
\paper New methods in computer tomography
\jour Mat. Model.
\yr 2001
\vol 13
\issue 1
\pages 51--64
\mathnet{http://mi.mathnet.ru/mm666}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1862304}
\zmath{https://zbmath.org/?q=an:1007.68199}
Linking options:
  • https://www.mathnet.ru/eng/mm666
  • https://www.mathnet.ru/eng/mm/v13/i1/p51
  • This publication is cited in the following 3 articles:
    1. A. V. Khovanskiy, “Development of block сycling inversion method in computer tomography”, Math. Models Comput. Simul., 4:6 (2012), 611–621  mathnet  crossref  mathscinet  elib
    2. A. V. Khovanskii, “Individualnaya sluchainaya posledovatelnost i generatory sluchainykh chisel”, Matem. modelirovanie, 21:7 (2009), 93–105  mathnet  mathscinet  zmath
    3. A. V. Khovanskii, N. M. Vakhanelova, A. M. Demkin, L. N. Starodubtseva, M. A. Charikov, A. V. Shulzhenko, “Metody ultramalorakursnoi tomografii v diagnostike plazmy”, Matem. modelirovanie, 16:2 (2004), 111–117  mathnet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:814
    Full-text PDF :287
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025