Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2002, Volume 14, Number 10, Pages 116–126 (Mi mm545)  

This article is cited in 15 scientific papers (total in 15 papers)

Mathematics of the Lefkovitch model: the reproductive potential and asymptotic cycles

D. O. Logofeta, I. N. Klochkovab

a A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A discrete-time model of discrete-stage-structured population dynamics is studied which generalises the classic Leslie model. The notion of reproductive potential is defined via the characteristic polynomial of the matrix of demographic parameters (Lefkovitch matrix), and the reproductive potential theorem is proved. A model where the demographic parameters are season-specific is proved to have no cycles in its annual dynamics, and we have found an inter-seasonal cycle resulting in the equilibrium population structure at the annual time scale. The seasonal model is calibrated on observation data for a population of Aporrectodea caliginosa worms under conditions of rlfear-Moscow localities. We have substituted certain assumptions for uncertainty in the data, and validity of the assumptions can thereafter be judged from the model results amenable to empiric tests.
Received: 01.12.2000
Bibliographic databases:
Language: Russian
Citation: D. O. Logofet, I. N. Klochkova, “Mathematics of the Lefkovitch model: the reproductive potential and asymptotic cycles”, Mat. Model., 14:10 (2002), 116–126
Citation in format AMSBIB
\Bibitem{LogKlo02}
\by D.~O.~Logofet, I.~N.~Klochkova
\paper Mathematics of the Lefkovitch model: the reproductive potential and asymptotic cycles
\jour Mat. Model.
\yr 2002
\vol 14
\issue 10
\pages 116--126
\mathnet{http://mi.mathnet.ru/mm545}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1989787}
\zmath{https://zbmath.org/?q=an:1011.92041}
Linking options:
  • https://www.mathnet.ru/eng/mm545
  • https://www.mathnet.ru/eng/mm/v14/i10/p116
  • This publication is cited in the following 15 articles:
    1. G. P. Neverova, E. Ya. Frisman, “Evolyutsionnaya dinamika dvukhvozrastnoi populyatsii pri plotnostno-zavisimoi regulyatsii vyzhivaemosti starshikh vozrastov”, Matem. biologiya i bioinform., 19:2 (2024), 293–303  mathnet  crossref
    2. Frisman E.Ya., Zhdanova O.L., Kulakov M.P., Neverova G.P., Revutskaya O.L., “Mathematical Modeling of Population Dynamics Based on Recurrent Equations: Results and Prospects. Part i”, Biol. Bull, 48:1 (2021), 1–15  crossref  isi  scopus
    3. Romanov M.S., Masterov V.B., “Low Breeding Performance of the Steller'S Sea Eagle (Haliaeetus Pelagicus) Causes the Populations to Decline”, Ecol. Model., 420 (2020), 108877  crossref  isi
    4. E. Ya. Frisman, M. P. Kulakov, O. L. Revutskaya, O. L. Zhdanova, G. P. Neverova, “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 119–151  mathnet  crossref
    5. Logofet D.O., “Polyvariant Ontogeny in Plants: When the Second Eigenvalue Plays a Primary Role”, Advanced Mathematical Methods in Biosciences and Applications, Steam-H Science Technology Engineering Agriculture Mathematics & Health, eds. Berezovskaya F., Toni B., Springer International Publishing Ag, 2019, 111–130  crossref  mathscinet  isi
    6. Logofet D.O., “Calamagrostis Model Revisited: Matrix Calibration as a Constraint Maximization Problem”, Ecol. Model., 254 (2013), 71–79  crossref  isi  elib
    7. D. O. Logofet, “Projection matrices revisited: a potential-growth indicator and the merit of indication”, J. Math. Sci., 193:5 (2013), 671–686  mathnet  crossref
    8. Nedorezov L.V., Utyupin Yu.V., “Nepreryvno-diskretnye modeli dinamiki chislennosti populyatsii”, Ekologiya. Seriya analiticheskikh obzorov mirovoi literatury, 2011, no. 95, 1–234  elib
    9. Poikolainen V.V., Sigovtsev G.S., “Detalizirovannaya model dinamiki strukturirovannoi populyatsii”, Uchenye zapiski Petrozavodskogo gosudarstvennogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki, 2011, no. 6, 91–96  elib
    10. Logofet D.O., “Svirezhev's substitution principle and matrix models for dynamics of populations with complex structures”, Zhurnal Obshchei Biologii, 71:1 (2010), 30–40  mathscinet  isi
    11. Logofet, DO, “Convexity in projection matrices: Projection to a calibration problem”, Ecological Modelling, 216:2 (2008), 217  crossref  isi  elib  scopus
    12. D. O. Logofet, I. N. Belova, “Nonnegative matrices as a tool to model population dynamics: Classical models and contemporary expansions”, J. Math. Sci., 155:6 (2008), 894–907  mathnet  crossref  mathscinet  zmath
    13. Logofet, DO, “Structure and dynamics of a clonal plant population: Classical model results in a non-classic formulation”, Ecological Modelling, 192:1–2 (2006), 95  crossref  isi  elib  scopus
    14. D. O. Logofet, “Tri istochnika i tri sostavnye chasti formalizma populyatsii s diskretnoi stadiinoi i vozrastnoi strukturami”, Matem. modelirovanie, 14:12 (2002), 11–22  mathnet  mathscinet  zmath
    15. Ulanova, NG, “The structure and dynamics of a woodreed Calamagrostis canescens population: a modelling approach”, Zhurnal Obshchei Biologii, 63:6 (2002), 509  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:1045
    Full-text PDF :387
    References:102
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025