Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2003, Volume 15, Number 1, Pages 87–100 (Mi mm507)  

The accuracy estimation of the numerical solution of the spectral problem with the operator depending on the eigenvalue

E. P. Zhidkov, N. B. Skachkov, T. M. Solov'eva

Joint Institute for Nuclear Research
References:
Abstract: The spectral problems with the eigenvalue-depending operator are usually appeared when the relative variants of the Schroedinger equation in the impulse space are considered. The eigenvalues and eigenfunctions calculation error caused by the numerical solving of such equations is the sum of the error entering the approximation of a continuous equation by the discret equations system with help the Bubnov–Galerkine method and the iterative method. It is shown that the iterative method error is one-two order smaller than for discretisation problem. Hense, the eigenvalues and eigenfunctions calculation accuracy of the spectral problem with the eigenvalue-depending operator is not worse then the linear spectral problem solution accuracy.
Received: 29.06.2001
Bibliographic databases:
Language: Russian
Citation: E. P. Zhidkov, N. B. Skachkov, T. M. Solov'eva, “The accuracy estimation of the numerical solution of the spectral problem with the operator depending on the eigenvalue”, Matem. Mod., 15:1 (2003), 87–100
Citation in format AMSBIB
\Bibitem{ZhiSkaSol03}
\by E.~P.~Zhidkov, N.~B.~Skachkov, T.~M.~Solov'eva
\paper The accuracy estimation of the numerical solution of the spectral problem with the operator depending on the eigenvalue
\jour Matem. Mod.
\yr 2003
\vol 15
\issue 1
\pages 87--100
\mathnet{http://mi.mathnet.ru/mm507}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1998735}
\zmath{https://zbmath.org/?q=an:1038.65119}
Linking options:
  • https://www.mathnet.ru/eng/mm507
  • https://www.mathnet.ru/eng/mm/v15/i1/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:479
    Full-text PDF :179
    References:97
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024