Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2003, Volume 15, Number 1, Pages 3–13 (Mi mm499)  

This article is cited in 8 scientific papers (total in 8 papers)

Monotonic difference schemes for transfer equation in plane layer

V. E. Troshchieva, Yu. V. Troshchievb

a Troitsk Institute for Innovation and Fusion Research
b M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
Full-text PDF (869 kB) Citations (8)
References:
Abstract: New finite-difference weighted schemes for the transport equation in plane-parallel geometry
$$ LN(x,\mu)\equiv\mu\frac{\partial N(x,\mu)}{\partial x}+\alpha(x)N(x,\mu)=S(x,\mu),\qquad 0\le x\le H,\quad -1\le\mu\le1, $$
with the initial-value conditions $N(H,\mu<0)=N_H(\mu)$, $N(0,\mu>0)=N_0(\mu)$ are constructed and investigated. The schemes are constructed in two ways: 1) as equivalent one to the classical three-point scheme for the self-adjoint transport equation of the second order
\begin{gather*} -\mu^2\frac{\partial}{\partial x}\biggl[\frac1{\alpha(x)}\frac{\partial N(x,\mu)}{\partial x}\biggr]+\alpha(x)N(x,\mu)=S(x,\mu)-\mu\frac{\partial}{\partial x}\biggl(\frac{S(x,\mu)}{\alpha(x)}\biggr), \\ 0\le x\le H,\quad -1\le\mu\le1, \end{gather*}
with the boundary-value conditions $N(H,\mu<0)=N_H(\mu<0)$, $LN(0,\mu<0)=S(0,\mu<0)$, $N(0,\mu>0)=N_0(\mu>0)$, $LN(H,\mu>0)=S(H,\mu>0)$; 2) as equivalent one to multi-point schemes for the first order transport equation. The constructed schemes are positive, monotonous, of the second order of accuracy and high-effective for numerical solution of transport problems. These theoretical and practical properties caused by special dependence of weights on the net interval.
Received: 07.05.2002
Bibliographic databases:
Language: Russian
Citation: V. E. Troshchiev, Yu. V. Troshchiev, “Monotonic difference schemes for transfer equation in plane layer”, Matem. Mod., 15:1 (2003), 3–13
Citation in format AMSBIB
\Bibitem{TroTro03}
\by V.~E.~Troshchiev, Yu.~V.~Troshchiev
\paper Monotonic difference schemes for transfer equation in plane layer
\jour Matem. Mod.
\yr 2003
\vol 15
\issue 1
\pages 3--13
\mathnet{http://mi.mathnet.ru/mm499}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1998731}
\zmath{https://zbmath.org/?q=an:1030.80003}
Linking options:
  • https://www.mathnet.ru/eng/mm499
  • https://www.mathnet.ru/eng/mm/v15/i1/p3
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:834
    Full-text PDF :323
    References:88
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024