Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2023, Volume 35, Number 5, Pages 87–103
DOI: https://doi.org/10.20948/mm-2023-05-06
(Mi mm4464)
 

Numerical solution of the Cauchy problem based on the basic element method

N. D. Dikusar

Joint Institute for Nuclear Research, Laboratory of Information Technology, Dubna, Moscow Reg.
References:
Abstract: A fundamentally new approach to the numerical solution of the Cauchy problem for ODE based on polynomials in the form of basic elements. In contrast to the explicit methods of Runge-Kutta, Adams and others, proposed approach can solve stiff problems. The approach is based on an explicit “predictor-corrector” scheme. The calculation of the prediction at the next step is carried out using two polynomials of the fifth degree, connected by additional conditions with double reference to the right side of the equation. The error of the method is regulated by the step length $h$ and the control parameter $K$, $0<K<1$. Such a scheme is stable for calculations with extremely small steps ($h=10^{-17}$, $10^{-15}$). The fifth order of the method is confirmed by the test for the stiff problem, also by the results of an analysis of an asymptotically precise error estimate according to the Richardson scheme on a sequence of shredding grids.
Keywords: stiff Cauchy problems, explicit schemes, basic element method, polynomial approximation and extrapolation, BEM-polynomials.
Received: 20.10.2022
Revised: 20.10.2022
Accepted: 12.12.2022
English version:
Mathematical Models and Computer Simulations, 2023, Volume 15, Issue 6, Pages 1024–1036
DOI: https://doi.org/10.1134/S2070048223060091
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. D. Dikusar, “Numerical solution of the Cauchy problem based on the basic element method”, Matem. Mod., 35:5 (2023), 87–103; Math. Models Comput. Simul., 15:6 (2023), 1024–1036
Citation in format AMSBIB
\Bibitem{Dik23}
\by N.~D.~Dikusar
\paper Numerical solution of the Cauchy problem based on the basic element method
\jour Matem. Mod.
\yr 2023
\vol 35
\issue 5
\pages 87--103
\mathnet{http://mi.mathnet.ru/mm4464}
\crossref{https://doi.org/10.20948/mm-2023-05-06}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4585496}
\transl
\jour Math. Models Comput. Simul.
\yr 2023
\vol 15
\issue 6
\pages 1024--1036
\crossref{https://doi.org/10.1134/S2070048223060091}
Linking options:
  • https://www.mathnet.ru/eng/mm4464
  • https://www.mathnet.ru/eng/mm/v35/i5/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024