Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2023, Volume 35, Number 5, Pages 31–46
DOI: https://doi.org/10.20948/mm-2023-05-03
(Mi mm4461)
 

This article is cited in 5 scientific papers (total in 5 papers)

Mathematical model of COVID-19 course and severity prediction

V. Ya. Kisselevskaya-Babininaab, A. A. Romanyukhab, T. E. Sannikovab

a Lomonosov Moscow State University
b Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences
Full-text PDF (588 kB) Citations (5)
References:
Abstract: The objective of this study is to develop a method for infection severity predicting and for choosing respiratory support treatment in COVID-19 patients. The tasks of classifying the initial condition and course of the disease in patients with COVID-19 infection and development of a mathematical model for COVID-19 progression in patients admitted in the intensive care unit are being solved. This study analyzes the anamnesis data, assesses the impact of patient’s comorbid chronic diseases and age on the severity of COVID-19 and the effectiveness of treatment. A mathematical model for COVID-19 progression was developed. Model parameters for groups of patients with different chronic diseases were estimated. The comorbidity index has been adapted to the features of the clinical data. An approach to selecting the efficient method of respiratory support in patients with severe forms of COVID-19 infection is proposed.
Keywords: COVID-19, statistical analysis, mathematical modelling, Markov process, comorbidity.
Received: 16.06.2022
Revised: 10.11.2022
Accepted: 06.03.2023
English version:
Mathematical Models and Computer Simulations, 2023, Volume 15, Issue 6, Pages 987–998
DOI: https://doi.org/10.1134/S2070048223060121
Document Type: Article
Language: Russian
Citation: V. Ya. Kisselevskaya-Babinina, A. A. Romanyukha, T. E. Sannikova, “Mathematical model of COVID-19 course and severity prediction”, Mat. Model., 35:5 (2023), 31–46; Math. Models Comput. Simul., 15:6 (2023), 987–998
Citation in format AMSBIB
\Bibitem{KisRomSan23}
\by V.~Ya.~Kisselevskaya-Babinina, A.~A.~Romanyukha, T.~E.~Sannikova
\paper Mathematical model of COVID-19 course and severity prediction
\jour Mat. Model.
\yr 2023
\vol 35
\issue 5
\pages 31--46
\mathnet{http://mi.mathnet.ru/mm4461}
\crossref{https://doi.org/10.20948/mm-2023-05-03}
\transl
\jour Math. Models Comput. Simul.
\yr 2023
\vol 15
\issue 6
\pages 987--998
\crossref{https://doi.org/10.1134/S2070048223060121}
Linking options:
  • https://www.mathnet.ru/eng/mm4461
  • https://www.mathnet.ru/eng/mm/v35/i5/p31
  • This publication is cited in the following 5 articles:
    1. I. D. Kolesin, E. M. Zhitkova, “Matematicheskoe modelirovanie rasprostraneniya COVID-19 s uchetom raspredeleniya bessimptomnykh sluchaev mezhdu deistvitelno bessimptomnymi i predsimptomnymi”, Matem. biologiya i bioinform., 19:1 (2024), 52–60  mathnet  crossref  elib
    2. A. Yu. Perevaryukha, “Phenomenological models of three scenarios of local coronavirus epidemics”, Math. Models Comput. Simul., 16:3 (2024), 396–411  mathnet  crossref  crossref
    3. A. V. Demidova, O. V. Druzhinina, O. N. Masina, A. A. Petrov, “Constructing compartmental models of dynanic systems using a software package for symbolic computation in Julia”, Programmirovanie, 2024, no. 2, 33  crossref
    4. A. V. Demidova, O. V. Druzhinina, O. N. Masina, A. A. Petrov, “Constructing Compartmental Models of Dynamic Systems Using a Software Package for Symbolic Computation in Julia”, Program Comput Soft, 50:2 (2024), 138  crossref
    5. I. V. Derevich, A. A. Panova, “Modeling the spread of viral infection in a local atmosphere infected with SARS-COV-2 virus. Constant virion concentration”, Math. Models Comput. Simul., 16:5 (2024), 698–710  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:289
    Full-text PDF :63
    References:55
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025