Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2023, Volume 35, Number 3, Pages 106–126
DOI: https://doi.org/10.20948/mm-2023-03-07
(Mi mm4453)
 

Numerical determination of the splitting of natural frequencies of an thin-walled shell with small nonaxisymmetric of the of the middle surface

O. Naraykinab, F. Sorokina, S. Kozubnyakab

a Bauman Moscow State Technical University
b National Research Center “Kurchatov Institute”
References:
Abstract: Based on the perturbation method, the task of determining the frequency spectrum splitting of elastic thin-walled shell, the geometry of which slightly differs from the axial symmetry, is solved. A mathematical model of the shell elastic element with arbitrarily small nonaxisymmetric geometry parameter errors and a software-algorithmic complex of numerical calculation of its natural frequency splitting are developed. With the help of computer analytics the perturbed differential-matrix operators for a thin-walled shell with arbitrary small deviations from the axial symmetry of the mid-surface shape are constructed. The results of calculations of specific shell elastic elements are presented.
Keywords: thin-walled shell, nonaxisymmetric imperfections of the median surface, frequency splitting, perturbation method, perturbed operator, direct tensor calculus.
Received: 10.11.2022
Revised: 10.11.2022
Accepted: 12.12.2022
English version:
Mathematical Models and Computer Simulations, 2023, Volume 15, Issue 5, Pages 850–862
DOI: https://doi.org/10.1134/S2070048223050071
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: O. Naraykin, F. Sorokin, S. Kozubnyak, “Numerical determination of the splitting of natural frequencies of an thin-walled shell with small nonaxisymmetric of the of the middle surface”, Matem. Mod., 35:3 (2023), 106–126; Math. Models Comput. Simul., 15:5 (2023), 850–862
Citation in format AMSBIB
\Bibitem{NarSorKoz23}
\by O.~Naraykin, F.~Sorokin, S.~Kozubnyak
\paper Numerical determination of the splitting of natural frequencies of an thin-walled shell with small nonaxisymmetric of the of the middle surface
\jour Matem. Mod.
\yr 2023
\vol 35
\issue 3
\pages 106--126
\mathnet{http://mi.mathnet.ru/mm4453}
\crossref{https://doi.org/10.20948/mm-2023-03-07}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4556398}
\transl
\jour Math. Models Comput. Simul.
\yr 2023
\vol 15
\issue 5
\pages 850--862
\crossref{https://doi.org/10.1134/S2070048223050071}
Linking options:
  • https://www.mathnet.ru/eng/mm4453
  • https://www.mathnet.ru/eng/mm/v35/i3/p106
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:156
    Full-text PDF :27
    References:40
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024