Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2023, Volume 35, Number 3, Pages 93–105
DOI: https://doi.org/10.20948/mm-2023-03-06
(Mi mm4452)
 

This article is cited in 3 scientific papers (total in 3 papers)

Numerical experiments with the NEMO ocean circulation model and the assimilation of observational data from ARGO

K. P. Belyaevab, A. A. Kuleshova, Yu. D. Resnyanskiic, I. N. Smirnovd, R. Yu. Fadeevec

a Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
b Shirshov Institute of Oceanology of Russian Academy of Science
c Hydrometeorological Research Centre of Russian Federation
d Lomonosov Moscow State University
e Institute of Numerical Mathematics of the Russian Academy of Sciences
Full-text PDF (713 kB) Citations (3)
References:
Abstract: The paper studies the spatiotemporal variability of the characteristics of the ocean circulation model Nucleus for European Modeling of the Ocean (NEMO) with data assimilation in conjunction with the Generalized Kalman filtering (GKF) method, previously developed by the authors. In the present work, numerical experiments were carried out with the global version of the NEMO model on the grid ORCA1 and using a principally new approach for determining the key parameters of the GKF method. Simulation was carried out on a selected time interval of 1 month of the spatiotemporal variability of ocean characteristics created by the NEMO model, both using the proposed data assimilation method with the archive of observational data from Argo drifters at different horizons, and without assimilation. The results of numerical experiments are analyzed.
Keywords: ocean modeling, NEMO model, observational data assimilation, generalized Kalman filter, Argo drifter data.
Funding agency Grant number
Russian Science Foundation 22-11-00053
Received: 08.11.2022
Revised: 08.11.2022
Accepted: 12.12.2022
English version:
Mathematical Models and Computer Simulations, 2023, Volume 15, Issue 5, Pages 842–849
DOI: https://doi.org/10.1134/S2070048223050022
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: K. P. Belyaev, A. A. Kuleshov, Yu. D. Resnyanskii, I. N. Smirnov, R. Yu. Fadeev, “Numerical experiments with the NEMO ocean circulation model and the assimilation of observational data from ARGO”, Matem. Mod., 35:3 (2023), 93–105; Math. Models Comput. Simul., 15:5 (2023), 842–849
Citation in format AMSBIB
\Bibitem{BelKulRes23}
\by K.~P.~Belyaev, A.~A.~Kuleshov, Yu.~D.~Resnyanskii, I.~N.~Smirnov, R.~Yu.~Fadeev
\paper Numerical experiments with the NEMO ocean circulation model and the assimilation of observational data from ARGO
\jour Matem. Mod.
\yr 2023
\vol 35
\issue 3
\pages 93--105
\mathnet{http://mi.mathnet.ru/mm4452}
\crossref{https://doi.org/10.20948/mm-2023-03-06}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4556397}
\transl
\jour Math. Models Comput. Simul.
\yr 2023
\vol 15
\issue 5
\pages 842--849
\crossref{https://doi.org/10.1134/S2070048223050022}
Linking options:
  • https://www.mathnet.ru/eng/mm4452
  • https://www.mathnet.ru/eng/mm/v35/i3/p93
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :24
    References:34
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024