Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2022, Volume 34, Number 8, Pages 73–96
DOI: https://doi.org/10.20948/mm-2022-08-05
(Mi mm4398)
 

This article is cited in 2 scientific papers (total in 2 papers)

Numerical simulation of dynamic processes in the medium of fine-grained solid particles

M. Y. Nemtsevab, I. S. Menshovba, I. V. Semenovb

a Keldysh Institute for Applied Mathematics RAS
b Federal Scientific Center Scientific Research Institute for System Analysis RAS
Full-text PDF (479 kB) Citations (2)
References:
Abstract: A simplified model system of governing equations describing the motion of an ensemble of solid fine-grained particles arising in the continual description of two-phase disperse media is considered. Specific features of this system are discontinuity in the characteristic velocity of small disturbance propagation when the volume fraction equals the value of close packing and possibility of forming void regions free of particles. A modification to the Godunov method based on the exact solution to the Riemann problem and an approximate HLL-type solver is proposed for the system considered which takes into account the mentioned specific features. Verification of the methods developed is performed on a set of test problems that are analogues of well-known in gas dynamics benchmarks by Sod and Shu-Osher. The problem of decompaction of a side-wall layer of compressed particles is also considered. The mechanism of particle detachment and development of a near-wall void zone free of particles is described. The obtained numerical results are compared with the available analytical data.
Keywords: two-phase disperse media, continuum model of ensemble of solid particles, Riemann problem, Godunov method.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0580-2021-0005 (№ 121031300050-6)
Russian Foundation for Basic Research 20-31-90027
Received: 17.05.2022
Revised: 14.06.2022
Accepted: 27.06.2022
English version:
Mathematical Models and Computer Simulations, 2023, Volume 15, Issue 2, Pages 210–226
DOI: https://doi.org/10.1134/S2070048223020138
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. Y. Nemtsev, I. S. Menshov, I. V. Semenov, “Numerical simulation of dynamic processes in the medium of fine-grained solid particles”, Matem. Mod., 34:8 (2022), 73–96; Math. Models Comput. Simul., 15:2 (2023), 210–226
Citation in format AMSBIB
\Bibitem{NemMenSem22}
\by M.~Y.~Nemtsev, I.~S.~Menshov, I.~V.~Semenov
\paper Numerical simulation of dynamic processes in the medium of fine-grained solid particles
\jour Matem. Mod.
\yr 2022
\vol 34
\issue 8
\pages 73--96
\mathnet{http://mi.mathnet.ru/mm4398}
\crossref{https://doi.org/10.20948/mm-2022-08-05}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4422587}
\transl
\jour Math. Models Comput. Simul.
\yr 2023
\vol 15
\issue 2
\pages 210--226
\crossref{https://doi.org/10.1134/S2070048223020138}
Linking options:
  • https://www.mathnet.ru/eng/mm4398
  • https://www.mathnet.ru/eng/mm/v34/i8/p73
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:298
    Full-text PDF :51
    References:80
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024