Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2021, Volume 33, Number 5, Pages 57–77
DOI: https://doi.org/10.20948/mm-2021-05-05
(Mi mm4287)
 

Lanchester's stochastic model of battle actions

V. G. Zadorozhny, A. S. Chebotarev, E. E. Dikarev

Voronezh State University
References:
Abstract: The mathematical model of interaction between the two opposing parties in the form of a system of differential equations (Lanchester) is considered, the coefficients of which are random processes set by characteristic functionality. The task is to find the first immediate functions of the solution. This task boils down to a deterministic system of differential equations with ordinary and variation derivatives. There are clear formulas for the first two momentary functions of the stochastic system solution. Tasks with gauss and evenly distributed random odds are considered. The numerical calculations and graphs of the behavior of mathematical expectation and dispersion function are given.
Keywords: Lanchester model, variation derivative, characteristic functional, moment functions, Gauss random process.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00732_а
Received: 04.08.2020
Revised: 04.08.2020
Accepted: 21.09.2020
English version:
Mathematical Models and Computer Simulations, 2021, Volume 13, Issue 6, Pages 1122–1137
DOI: https://doi.org/10.1134/S2070048221060247
Document Type: Article
Language: Russian
Citation: V. G. Zadorozhny, A. S. Chebotarev, E. E. Dikarev, “Lanchester's stochastic model of battle actions”, Matem. Mod., 33:5 (2021), 57–77; Math. Models Comput. Simul., 13:6 (2021), 1122–1137
Citation in format AMSBIB
\Bibitem{ZadCheDik21}
\by V.~G.~Zadorozhny, A.~S.~Chebotarev, E.~E.~Dikarev
\paper Lanchester's stochastic model of battle actions
\jour Matem. Mod.
\yr 2021
\vol 33
\issue 5
\pages 57--77
\mathnet{http://mi.mathnet.ru/mm4287}
\crossref{https://doi.org/10.20948/mm-2021-05-05}
\transl
\jour Math. Models Comput. Simul.
\yr 2021
\vol 13
\issue 6
\pages 1122--1137
\crossref{https://doi.org/10.1134/S2070048221060247}
Linking options:
  • https://www.mathnet.ru/eng/mm4287
  • https://www.mathnet.ru/eng/mm/v33/i5/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:453
    Full-text PDF :161
    References:52
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024